Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

1. A Family of Convective Models

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Six canonical models of convection are described: three configurations of internally heated (IH) convection driven by constant and uniform volumetric heating, and three configurations of Rayleigh–Bénard (RB) convection driven by the boundary conditions. The IH models are distinguished by differing pairs of thermal boundary conditions: top and bottom boundaries of equal temperature, an insulating bottom with heat flux fixed at the top, and an insulating bottom with temperature fixed at the top. The RB models too are distinguished by whether temperatures or heat fluxes are fixed at the top and bottom boundaries. Integral quantities important to heat transport are examined, including the mean fluid temperature, the mean temperature difference between the boundaries, and the mean convective heat flux. Integral relations and bounds are presented, and further bounds are conjectured for the IH cases. Similarities and differences between the six configurations are emphasized.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81(2), 503–537 (2009)CrossRef Ahlers, G., Grossmann, S., Lohse, D.: Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys. 81(2), 503–537 (2009)CrossRef
2.
3.
go back to reference Asfia, F.J., Dhir, V.K.: An experimental study of natural convection in a volumetrically heated spherical pool bounded on top with a rigid wall. Nucl. Eng. Des. 163(3), 333–348 (1996)CrossRef Asfia, F.J., Dhir, V.K.: An experimental study of natural convection in a volumetrically heated spherical pool bounded on top with a rigid wall. Nucl. Eng. Des. 163(3), 333–348 (1996)CrossRef
4.
go back to reference Aurnou, J., Andreadis, S., Zhu, L., Olson, P.: Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134 (2003)CrossRef Aurnou, J., Andreadis, S., Zhu, L., Olson, P.: Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119–134 (2003)CrossRef
5.
go back to reference Avsec, D.: Tourbillons thermoconvectifs tans l’air. Application à la météorologie. Ph.D. thesis, Université de Paris (1939) Avsec, D.: Tourbillons thermoconvectifs tans l’air. Application à la météorologie. Ph.D. thesis, Université de Paris (1939)
6.
go back to reference Calkins, M.A., Noir, J., Eldredge, J.D., Aurnou, J.M.: The effects of boundary topography on convection in Earth’s core. Geophys. J. Int. 189, 799–814 (2012)CrossRef Calkins, M.A., Noir, J., Eldredge, J.D., Aurnou, J.M.: The effects of boundary topography on convection in Earth’s core. Geophys. J. Int. 189, 799–814 (2012)CrossRef
7.
go back to reference Cardin, P., Olson, P.: Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82, 235–259 (1994)CrossRef Cardin, P., Olson, P.: Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82, 235–259 (1994)CrossRef
8.
go back to reference Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981) Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)
9.
go back to reference Chapman, C.J., Childress, S., Proctor, M.R.E.: Long wavelength thermal convection between non-conducting boundaries. Earth Planet. Sci. Lett. 51, 362–369 (1980)CrossRef Chapman, C.J., Childress, S., Proctor, M.R.E.: Long wavelength thermal convection between non-conducting boundaries. Earth Planet. Sci. Lett. 51, 362–369 (1980)CrossRef
10.
go back to reference Cheung, F.B., Chawla, T.C.: Complex heat transfer processes in heat-generating horizontal fluid layers. In: Annual Re view of Numerical Fluid Mechanics and Heat Transfer, vol. 1, pp. 403–448. Hemisphere, New York (1987) Cheung, F.B., Chawla, T.C.: Complex heat transfer processes in heat-generating horizontal fluid layers. In: Annual Re view of Numerical Fluid Mechanics and Heat Transfer, vol. 1, pp. 403–448. Hemisphere, New York (1987)
11.
go back to reference Chillà, F., Schumacher, J.: New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35(7) (2012) Chillà, F., Schumacher, J.: New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E 35(7) (2012)
12.
go back to reference Choffrut, A., Nobili, C., Otto, F.: Upper bounds on Nusselt number at finite Prandtl number. arXiv:1412.4812v1 (2014) Choffrut, A., Nobili, C., Otto, F.: Upper bounds on Nusselt number at finite Prandtl number. arXiv:1412.4812v1 (2014)
13.
go back to reference Emanuel, K.A.: Atmospheric Convection. Oxford University Press, Oxford (1994) Emanuel, K.A.: Atmospheric Convection. Oxford University Press, Oxford (1994)
14.
go back to reference Fearn, D.R., Loper, D.E.: Compositional convection and stratification of Earth’s core. Nature 289, 393–394 (1981)CrossRef Fearn, D.R., Loper, D.E.: Compositional convection and stratification of Earth’s core. Nature 289, 393–394 (1981)CrossRef
15.
go back to reference Featherstone, N.A., Browning, M.K., Brun, A.S., Toomre, J.: Effects of fossil magnetic fields on convective core dynamos in A-type stars. Astrophys. J. 705, 1000–1018 (2009)CrossRef Featherstone, N.A., Browning, M.K., Brun, A.S., Toomre, J.: Effects of fossil magnetic fields on convective core dynamos in A-type stars. Astrophys. J. 705, 1000–1018 (2009)CrossRef
16.
go back to reference Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry, and nonlinear stability. Arch. Ration. Mech. Anal. 89(3), 211–228 (1985)CrossRefMathSciNetMATH Galdi, G.P., Straughan, B.: Exchange of stabilities, symmetry, and nonlinear stability. Arch. Ration. Mech. Anal. 89(3), 211–228 (1985)CrossRefMathSciNetMATH
17.
go back to reference Gastine, T., Yadav, R.K., Morin, J., Reiners, A., Wicht, J.: From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. Lett. 438, 76–80 (2014)CrossRef Gastine, T., Yadav, R.K., Morin, J., Reiners, A., Wicht, J.: From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. Lett. 438, 76–80 (2014)CrossRef
18.
go back to reference Getling, A.V.: Rayleigh-Bénard Convection: Structures and Dynamics. World Scientific Publishing Co, Singapore (1998)CrossRefMATH Getling, A.V.: Rayleigh-Bénard Convection: Structures and Dynamics. World Scientific Publishing Co, Singapore (1998)CrossRefMATH
19.
go back to reference Goluskin, D., Spiegel, E.A.: Convection driven by internal heating. Phys. Lett. A 377(1-2), 83–92 (2012)CrossRef Goluskin, D., Spiegel, E.A.: Convection driven by internal heating. Phys. Lett. A 377(1-2), 83–92 (2012)CrossRef
20.
go back to reference Goluskin, D., Johnston, H., Flierl, G.R., Spiegel, E.A.: Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360–385 (2014)CrossRef Goluskin, D., Johnston, H., Flierl, G.R., Spiegel, E.A.: Convectively driven shear and decreased heat flux. J. Fluid Mech. 759, 360–385 (2014)CrossRef
21.
go back to reference Grötzbach, G., Wörner, M.: Direct numerical and large eddy simulations in nuclear applications. Int. J. Heat Fluid Flow 20(3), 222–240 (1999)CrossRef Grötzbach, G., Wörner, M.: Direct numerical and large eddy simulations in nuclear applications. Int. J. Heat Fluid Flow 20(3), 222–240 (1999)CrossRef
22.
go back to reference Heimpel, M., Aurnou, J., Wicht, J.: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–6 (2005)CrossRef Heimpel, M., Aurnou, J., Wicht, J.: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193–6 (2005)CrossRef
23.
go back to reference Houseman, G.: The dependence of convection planform on mode of heating. Nature 332, 346–349 (1988)CrossRef Houseman, G.: The dependence of convection planform on mode of heating. Nature 332, 346–349 (1988)CrossRef
24.
go back to reference Hurle, D.T.J., Jakeman, E., Pike, E.R.: On the solution of the Bénard problem with boundaries of finite conductivity. Proc. R. Soc. A 296(1447), 469–475 (1967)CrossRef Hurle, D.T.J., Jakeman, E., Pike, E.R.: On the solution of the Bénard problem with boundaries of finite conductivity. Proc. R. Soc. A 296(1447), 469–475 (1967)CrossRef
25.
go back to reference Johnston, H., Doering, C.R.: Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102(6), 064,501 (2009) Johnston, H., Doering, C.R.: Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102(6), 064,501 (2009)
26.
go back to reference Jones, C.A.: A dynamo model of Jupiter’s magnetic field. Icarus 241, 148–159 (2014)CrossRef Jones, C.A.: A dynamo model of Jupiter’s magnetic field. Icarus 241, 148–159 (2014)CrossRef
27.
go back to reference Joseph, D.D., Shir, C.C.: Subcritical convective instability: part 1. Fluid layers. J. Fluid Mech. 26(4), 753–768 (1966)CrossRefMATH Joseph, D.D., Shir, C.C.: Subcritical convective instability: part 1. Fluid layers. J. Fluid Mech. 26(4), 753–768 (1966)CrossRefMATH
28.
go back to reference Kaspi, Y., Flierl, G.R., Showman, A.P.: The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202(2), 525–542 (2009)CrossRef Kaspi, Y., Flierl, G.R., Showman, A.P.: The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202(2), 525–542 (2009)CrossRef
29.
go back to reference Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution. Springer, New York (1994) Kippenhahn, R., Weigert, A.: Stellar Structure and Evolution. Springer, New York (1994)
30.
go back to reference Kolmychkov, V.V., Mazhorova, O.S., Shcheritsa, O.V.: Numerical study of convection near the stability threshold in a square box with internal heat generation. Phys. Lett. A 377, 2111–2117 (2013)CrossRefMathSciNet Kolmychkov, V.V., Mazhorova, O.S., Shcheritsa, O.V.: Numerical study of convection near the stability threshold in a square box with internal heat generation. Phys. Lett. A 377, 2111–2117 (2013)CrossRefMathSciNet
31.
go back to reference Kulacki, F.A., Richards, D.E.: Natural convection in plane layers and cavities with volumetric energy sources. In: Natural Convection: Fundamentals and Applications, pp. 179–254. Hemisphere, New York (1985) Kulacki, F.A., Richards, D.E.: Natural convection in plane layers and cavities with volumetric energy sources. In: Natural Convection: Fundamentals and Applications, pp. 179–254. Hemisphere, New York (1985)
32.
go back to reference Lohse, D., Xia, K.Q.: Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42(1), 335–364 (2010)CrossRef Lohse, D., Xia, K.Q.: Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 42(1), 335–364 (2010)CrossRef
33.
go back to reference Marshall, J., Schott, F.: Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 1–64 (1999)CrossRef Marshall, J., Schott, F.: Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 1–64 (1999)CrossRef
34.
go back to reference Nourgaliev, R.R., Dinh, T.N., Sehgal, B.R.: Effect of fluid Prandtl number on heat transfer characteristics in internally heated liquid pools with Rayleigh numbers up to 1012. Nucl. Eng. Des. 169, 165–184 (1997)CrossRef Nourgaliev, R.R., Dinh, T.N., Sehgal, B.R.: Effect of fluid Prandtl number on heat transfer characteristics in internally heated liquid pools with Rayleigh numbers up to 1012. Nucl. Eng. Des. 169, 165–184 (1997)CrossRef
35.
go back to reference Oberbeck, A.: Ueber die wärmeleitung der flüssigkeiten bei berücksichtigung der strömungen infolge von temperaturdifferenzen. Ann. Phys. 243(6), 271–292 (1879)CrossRef Oberbeck, A.: Ueber die wärmeleitung der flüssigkeiten bei berücksichtigung der strömungen infolge von temperaturdifferenzen. Ann. Phys. 243(6), 271–292 (1879)CrossRef
36.
go back to reference Otero, J., Wittenberg, R.W., Worthing, R.A., Doering, C.R.: Bounds on Rayleigh-Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191–199 (2002)CrossRefMathSciNetMATH Otero, J., Wittenberg, R.W., Worthing, R.A., Doering, C.R.: Bounds on Rayleigh-Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191–199 (2002)CrossRefMathSciNetMATH
37.
go back to reference Rajagopal, K.R., Ruzicka, M., Srinivasa, A.R.: On the Oberbeck-Boussinesq approximation. Math. Model. Methods Appl. Sci. 6(8), 1157–1167 (1996)CrossRefMathSciNetMATH Rajagopal, K.R., Ruzicka, M., Srinivasa, A.R.: On the Oberbeck-Boussinesq approximation. Math. Model. Methods Appl. Sci. 6(8), 1157–1167 (1996)CrossRefMathSciNetMATH
38.
go back to reference Rayleigh, L.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32(192), 529–546 (1916)CrossRef Rayleigh, L.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32(192), 529–546 (1916)CrossRef
39.
go back to reference Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)CrossRef Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001)CrossRef
41.
go back to reference Soderlund, K.M., Schmidt, B.E., Wicht, J., Blankenship, D.D.: Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci. 7(12), 16–19 (2014) Soderlund, K.M., Schmidt, B.E., Wicht, J., Blankenship, D.D.: Ocean-driven heating of Europa’s icy shell at low latitudes. Nat. Geosci. 7(12), 16–19 (2014)
42.
go back to reference Sotin, C., Labrosse, S.: Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Inter. 112, 171–190 (1999)CrossRef Sotin, C., Labrosse, S.: Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Inter. 112, 171–190 (1999)CrossRef
43.
go back to reference Sparrow, E.M., Goldstein, R.J., Jonsson, V.K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18(04), 513–528 (1963)CrossRefMathSciNet Sparrow, E.M., Goldstein, R.J., Jonsson, V.K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18(04), 513–528 (1963)CrossRefMathSciNet
44.
go back to reference Spiegel, E.A.: Thermal turbulence at very small Prandtl number. J. Geophys. Res. 67(8), 3063–3070 (1962)CrossRef Spiegel, E.A.: Thermal turbulence at very small Prandtl number. J. Geophys. Res. 67(8), 3063–3070 (1962)CrossRef
45.
go back to reference Spiegel, E.A.: Convection in stars I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9, 323–352 (1971)CrossRef Spiegel, E.A.: Convection in stars I. Basic Boussinesq convection. Annu. Rev. Astron. Astrophys. 9, 323–352 (1971)CrossRef
46.
go back to reference Stern, M.E. (ed.): Ocean Circulation Physics. Academic Press, New York (1975) Stern, M.E. (ed.): Ocean Circulation Physics. Academic Press, New York (1975)
47.
go back to reference Storey, B.D., Zaltzman, B., Rubinstein, I.: Bulk electroconvective instability at high Péclet numbers. Phys. Rev. E 76(4), 041,501 (2007) Storey, B.D., Zaltzman, B., Rubinstein, I.: Bulk electroconvective instability at high Péclet numbers. Phys. Rev. E 76(4), 041,501 (2007)
49.
go back to reference Thirlby, R.: Convection in an internally heated layer. J. Fluid Mech. 44(04), 673–693 (1970)CrossRefMATH Thirlby, R.: Convection in an internally heated layer. J. Fluid Mech. 44(04), 673–693 (1970)CrossRefMATH
50.
go back to reference Thompson, P.A.: Compressible Fluid Dynamics. McGraw-Hill Inc, New York (1972)MATH Thompson, P.A.: Compressible Fluid Dynamics. McGraw-Hill Inc, New York (1972)MATH
51.
go back to reference van der Poel, E.P., Ostilla-Mónico, R., Verzicco, R., Lohse, D.: Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection. Phys. Rev. E 90(1), 013,017 (2014) van der Poel, E.P., Ostilla-Mónico, R., Verzicco, R., Lohse, D.: Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection. Phys. Rev. E 90(1), 013,017 (2014)
52.
go back to reference Vel’tishchev, N.F.: Convection in a horizontal fluid layer with a uniform internal heat source. Fluid Dyn. 39(2), 189–197 (2004)CrossRefMATH Vel’tishchev, N.F.: Convection in a horizontal fluid layer with a uniform internal heat source. Fluid Dyn. 39(2), 189–197 (2004)CrossRefMATH
53.
go back to reference Verzicco, R., Sreenivasan, K.R.: A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203–219 (2008)CrossRefMATH Verzicco, R., Sreenivasan, K.R.: A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 203–219 (2008)CrossRefMATH
54.
Metadata
Title
A Family of Convective Models
Author
David Goluskin
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-23941-5_1

Premium Partners