Skip to main content
Top

2024 | OriginalPaper | Chapter

Assessing the Effectiveness of Mechanical Sensors for Respiratory Rate Detection

Authors : Dyah Titisari, M. Prastawa Assalim T. Putra

Published in: Proceedings of the 4th International Conference on Electronics, Biomedical Engineering, and Health Informatics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Assessing respiratory rate is pivotal to monitoring an individual's health status. This research endeavors to meticulously evaluate the efficacy of three distinct mechanical sensors: piezoelectric sensors, force-sensitive resistor sensors, and Flex sensors, in the precise measurement of respiratory rates. The experimental design involved the strategic placement of these sensors onto a mannequin's chest cavity, enabling the conversion of chest pressure into tension. Subsequently, a sophisticated data processing system, driven by Arduino technology, was employed, with the results elegantly displayed through a Delphi interface. The outcomes of this extensive experimentation yielded compelling results, with the force-sensitive resistor sensor emerging as the standout performer, boasting a remarkably low error value of 0.2781 ± 0.4481. This exceptional precision was particularly notable when assessing respiratory rates at setting 20. Such findings underscore the pragmatic application of the force-sensitive resistor sensor within healthcare equipment systems, promising user-friendly operation and efficient retrieval of invaluable patient data. This study not only adds depth to our understanding of the suitability of mechanical sensors for respiratory rate monitoring but also accentuates the transformative potential of the force-sensitive resistor sensor in elevating measurement accuracy to unprecedented levels. Furthermore, it lays the foundation for future research endeavors, with promising directions including sensor refinement and the implementation of cutting-edge data processing techniques, aimed at ushering in a new era of excellence in respiratory rate assessment for healthcare applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Lepine NN, Tajima T, Ogasawara T, Kasahara R, Koizumi H (2016) Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society EMBS, vol 2016-Octob, pp 3797–3800. https://doi.org/10.1109/EMBC.2016.7591555 Lepine NN, Tajima T, Ogasawara T, Kasahara R, Koizumi H (2016) Robust respiration rate estimation using adaptive Kalman filtering with textile ECG sensor and accelerometer. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society EMBS, vol 2016-Octob, pp 3797–3800. https://​doi.​org/​10.​1109/​EMBC.​2016.​7591555
5.
go back to reference Yearmwar MBB, Mhetre PM (2018) Respiration rate measurement: a different approach. Int J Pure Appl Math 118(24):1–9 Yearmwar MBB, Mhetre PM (2018) Respiration rate measurement: a different approach. Int J Pure Appl Math 118(24):1–9
6.
go back to reference Gede ID, Utomo B, Amrinsani F, Purwanto E (2021) Low cost health monitoring system based on internet of things using email notification. Indones J Electron Electromed Med Informatics 3(2):45–52CrossRef Gede ID, Utomo B, Amrinsani F, Purwanto E (2021) Low cost health monitoring system based on internet of things using email notification. Indones J Electron Electromed Med Informatics 3(2):45–52CrossRef
7.
go back to reference Sorie W, Kamara N (2020) Smart sensors and their application in monitoring respiratory rate Sorie W, Kamara N (2020) Smart sensors and their application in monitoring respiratory rate
8.
go back to reference Andurkar AGANESH (2017) Real time respiration rate measurement using temperature sensor. Int J Recent Innov Trends Comput Commun 5(6):605–607 Andurkar AGANESH (2017) Real time respiration rate measurement using temperature sensor. Int J Recent Innov Trends Comput Commun 5(6):605–607
10.
go back to reference Shankar N, Sankar K (2018) Measurement of respiratory rate using peizoelectric sensor. Int J Sci Res Rev 7(1):184–188 Shankar N, Sankar K (2018) Measurement of respiratory rate using peizoelectric sensor. Int J Sci Res Rev 7(1):184–188
11.
go back to reference Dash S, Shelley KH, Silverman DG, Chon KH, Member S (2010) Estimation of respiratory rate from ECG, photoplethysmogram, and piezoelectric pulse transducer signals: a comparative study of time—frequency methods. IEEE Trans Biomed Eng 57(5):1099–1107CrossRef Dash S, Shelley KH, Silverman DG, Chon KH, Member S (2010) Estimation of respiratory rate from ECG, photoplethysmogram, and piezoelectric pulse transducer signals: a comparative study of time—frequency methods. IEEE Trans Biomed Eng 57(5):1099–1107CrossRef
13.
go back to reference Zhang Q, Chen X, Zhan Q, Yang T, Xia S (2017) Respiration-based emotion recognition with deep learning. Comput Ind 92:84–90CrossRef Zhang Q, Chen X, Zhan Q, Yang T, Xia S (2017) Respiration-based emotion recognition with deep learning. Comput Ind 92:84–90CrossRef
15.
go back to reference Karhu T (2018) Piezoelectric sensors for measuring biosignals. J J Chem Pharm Sci 7:92 Karhu T (2018) Piezoelectric sensors for measuring biosignals. J J Chem Pharm Sci 7:92
16.
go back to reference Klap T, Shinar Z (2018) Using piezoelectric sensor for continuous-contact-free monitoring of heart and respiration rates in real-life hospital settings using piezoelectric sensor for continuous-contact-free monitoring of heart and respiration rates in real-life hospital settings. J Comput Cardiol 40(February):671–674 Klap T, Shinar Z (2018) Using piezoelectric sensor for continuous-contact-free monitoring of heart and respiration rates in real-life hospital settings using piezoelectric sensor for continuous-contact-free monitoring of heart and respiration rates in real-life hospital settings. J Comput Cardiol 40(February):671–674
17.
go back to reference Ardiyanto A, Yulianto E, Titisari D (2018) Sabuk respiration rate dengan sensor piezoelektrik. Indones J Electron Electromed Med Informatics, 1–10 Ardiyanto A, Yulianto E, Titisari D (2018) Sabuk respiration rate dengan sensor piezoelektrik. Indones J Electron Electromed Med Informatics, 1–10
18.
go back to reference Motin MA, Karmakar CK, Palaniswami M (2016) An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (EMBS), vol 2016-Octob, pp 3817–3820. https://doi.org/10.1109/EMBC.2016.7591560 Motin MA, Karmakar CK, Palaniswami M (2016) An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (EMBS), vol 2016-Octob, pp 3817–3820. https://​doi.​org/​10.​1109/​EMBC.​2016.​7591560
19.
go back to reference Bhattacharya R, Bandyopadhyay N, Kalaivani S (2017) Real time android app based respiration rate monitor. In: International conference on electronics, communication and aerospace technology, pp 709–712 Bhattacharya R, Bandyopadhyay N, Kalaivani S (2017) Real time android app based respiration rate monitor. In: International conference on electronics, communication and aerospace technology, pp 709–712
21.
go back to reference Bhattacharya R, Bandyopadhyay N, Kalaivani S (2017) Real time Android app based respiration rate monitor. In: 2017 international conference of electronics, communication and aerospace technology (ICECA), vol 1, pp 709–712 Bhattacharya R, Bandyopadhyay N, Kalaivani S (2017) Real time Android app based respiration rate monitor. In: 2017 international conference of electronics, communication and aerospace technology (ICECA), vol 1, pp 709–712
22.
go back to reference Vanegas E (2021) The effect of measurement trends in belt breathing sensors. Eng Proc 4–8 Vanegas E (2021) The effect of measurement trends in belt breathing sensors. Eng Proc 4–8
Metadata
Title
Assessing the Effectiveness of Mechanical Sensors for Respiratory Rate Detection
Authors
Dyah Titisari
M. Prastawa Assalim T. Putra
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1463-6_36