Skip to main content
Top

2013 | OriginalPaper | Chapter

2. Biofuels: Production Technologies, Global Profile, and Market Potentials

Authors : Keat Teong Lee, Cynthia Ofori-Boateng

Published in: Sustainability of Biofuel Production from Oil Palm Biomass

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In spite of the benefits associated with the production and consumption of biofuels, there are some crucial debatable issues like high cost, food insecurity, etc., that put them to the negative side. However, biofuels still hold impressive market potentials in the world today though most of their production technologies are sophisticated and costly. Liquid biofuels like bioethanol and biodiesel are commonly produced from feedstocks like corn, rapeseed, soybean, etc., but there are other potential feedstocks, which are more sustainable like palm oil. This chapter discusses the major sources of biofuel feedstocks, types of biofuels, their production technologies, and global market potentials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
A million ton of oil equivalent (mtoe) is approximately equal to 41.87 GJ. Thus, in 2011, biofuels contributed about 2302.85 GJ energy to the world’s transportation sector and this is expected to increase to about 750 mtoe in 2050 (EIA 2011).
 
2
Unless all the input resources (both materials and energy) are sourced from renewable sources, biofuels would not be considered carbon neutral though their contributions to GHG emission may be negligible.
 
3
FGB include biodiesel from rapeseed oil, bioethanol from wheat, biogas from corn etc.
 
4
The use of biofuels to cut down GHG emissions attracts about US$ 754, US$ 275 and US$ 306/ton of CO2 for corn ethanol, cellulosic ethanol and biodiesel respectively. Again, a taxpayer in USA who used a gallon of corn ethanol, cellulosic ethanol and biodiesel would obtain a credit of US$ 1.78, US$ 3.00 and US$ 2.55 respectively as a way of substituting fossil fuels (CBO 2009).
 
5
FFA levels in animal fats, wastes cooking oil, crude vegetable oil and refined vegetable oil are 10–30, 4–40, 5–65 and 0.01–0.5 % respectively (Marchetti et al. 2008; Liu et al. 2007).
 
6
Commonly used catalysts for pyrolysis include silicon dioxide (SiO2), aluminum oxide (Al2O3), zeolites, clay montmorillonite, aluminum chloride, aluminum bromide, ferrous chloride, ferrous bromide etc.
 
7
Examples of homogeneous catalysts are sulphuric acid (H2SO4), hydrochloric acid (HCl), sodium hydroxide (NaOH), potassium hydroxide (KOH) etc. Sulphated zirconium, K2CO3/MgO etc. are examples of heterogeneous catalysts used during transesterification reactions.
 
8
The BtL products (biodiesel and bio-gasoline) produced from palm oil via the NexBTL process are found to have greenhouse gas emissions of about 40–60 % (over its entire life cycle) lower than that for fossil fuel (Hodge 2006).
 
9
DuPont Danisco Cellulosic Ethanol LLC is set to begin operation in 2013. Presently, there is no company in the world producing commercial cellulosic bioethanol. However, companies like Novozymes, Diversa, Dyadic in the USA are currently developing efficient enzymes for the conversion of lignocellulosic materials into bio-ethanol. Again, in USA and some parts of Asia, over 20 companies have been testing their technologies on pilot scale since 2008 with the hope of commercializing by 2017 (Fehrenbacher 2012).
 
10
This technology has not been tested on commercial basis yet (Bacovsky et al. 2010).
 
11
Biomass-to-liquid (BTL) biofuels also called Fischer–Tropsch fuels include synthetic diesel, bio-kerosene etc.
 
12
An energy content of about 6 kWh is assumed (corresponding to about 0.6 l of diesel fuel).
 
13
Mesophilic microorganisms are the bacteria that aid anaerobic digestion and usually thrive well between temperatures of 20–45 °C and pH of 7.
 
14
Thermophilic bacteria operate efficiently at temperatures between 45 and 71 °C and pH between 2.3 and 5.
 
15
This biogas is produced from over 4500 commercial biogas digesters and landfill sites excluding the millions of small scale ones.
 
Literature
go back to reference Adebayo GB, Ameen OM, Abass LT (2011) Physico-chemical properties of biodiesel produced from Jatropha Curcas oil and fossil diesel. J Microbiol Biotechnol Res 1:12–16 Adebayo GB, Ameen OM, Abass LT (2011) Physico-chemical properties of biodiesel produced from Jatropha Curcas oil and fossil diesel. J Microbiol Biotechnol Res 1:12–16
go back to reference Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energy Rev 15:1615–1624CrossRef Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energy Rev 15:1615–1624CrossRef
go back to reference Bacovsky D, Dallos M, Wörgetter M (2010) Status of 2nd generation biofuels demonstration facilities. Report No. T39-P1b, IEA Bioenergy Task 39 Liquid fuels from biomass Bacovsky D, Dallos M, Wörgetter M (2010) Status of 2nd generation biofuels demonstration facilities. Report No. T39-P1b, IEA Bioenergy Task 39 Liquid fuels from biomass
go back to reference Balat M (2005) Current alternative engine fuels. Energy Source 27:569–577CrossRef Balat M (2005) Current alternative engine fuels. Energy Source 27:569–577CrossRef
go back to reference Barsic NJ, Humke AL (1981) Performance and emission characteristic of a naturally aspirated diesel engine with vegetable oil fuels. SAE. 1173-87, paper no. 810262 Barsic NJ, Humke AL (1981) Performance and emission characteristic of a naturally aspirated diesel engine with vegetable oil fuels. SAE. 1173-87, paper no. 810262
go back to reference Bhatti HN, Hanif MA, Faruq U, Sheikh MA (2008) Acid and base catalyzed transesterification of animal fats to biodiesel. Iran J Chem Chem Eng 27:41–48 Bhatti HN, Hanif MA, Faruq U, Sheikh MA (2008) Acid and base catalyzed transesterification of animal fats to biodiesel. Iran J Chem Chem Eng 27:41–48
go back to reference Bialkowski MT, Pekdemir T, Reuben R, Brautsch M, Towers DP, Elsbett G (2005) Preliminary approach towards a CDI system modification operating on neat rapeseed oil. J KONES 12(1), ISSN 4005 12341 4005 Bialkowski MT, Pekdemir T, Reuben R, Brautsch M, Towers DP, Elsbett G (2005) Preliminary approach towards a CDI system modification operating on neat rapeseed oil. J KONES 12(1), ISSN 4005 12341 4005
go back to reference Billaud F, Dominguez V, Broutin P, Busson C (1995) Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil. JAOCS 72:1179–1154 Billaud F, Dominguez V, Broutin P, Busson C (1995) Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil. JAOCS 72:1179–1154
go back to reference Boateng AA, Hicks KB, Flores RA, Gutsol A (2006) Pyrolysis of hull-enriched byproducts from the scarification of hulled barley (Hordeum vulgare L.). J Anal Appl Pyrolysis 78:95–103CrossRef Boateng AA, Hicks KB, Flores RA, Gutsol A (2006) Pyrolysis of hull-enriched byproducts from the scarification of hulled barley (Hordeum vulgare L.). J Anal Appl Pyrolysis 78:95–103CrossRef
go back to reference CBO (Congressional Budget Office) (2009) Budget and economic outlook. Texas, USA CBO (Congressional Budget Office) (2009) Budget and economic outlook. Texas, USA
go back to reference CDIAC (Carbon Dioxide Information Analysis Center) (2010) The increasing concentration of atmospheric CO2: how much, when and why? In: Proceedings of 26th session of Erice international seminars on planetary emergencies, Erice, Sicily, Italy, 19–24 Aug 2001 CDIAC (Carbon Dioxide Information Analysis Center) (2010) The increasing concentration of atmospheric CO2: how much, when and why? In: Proceedings of 26th session of Erice international seminars on planetary emergencies, Erice, Sicily, Italy, 19–24 Aug 2001
go back to reference Chaudhari ST, Bej SK, Bakhshi NN, Dalai AK (2001) Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas. Energy Fuel 15:736–742CrossRef Chaudhari ST, Bej SK, Bakhshi NN, Dalai AK (2001) Steam gasification of biomass-derived char for the production of carbon monoxide-rich synthesis gas. Energy Fuel 15:736–742CrossRef
go back to reference Chaudhari ST, Dalai AK, Bakhshi NN (2003) Production of hydrogen and/or syngas (H2 + CO) via steam gasification of biomass-derived chars. Energy Fuel 17:1062–1067CrossRef Chaudhari ST, Dalai AK, Bakhshi NN (2003) Production of hydrogen and/or syngas (H2 + CO) via steam gasification of biomass-derived chars. Energy Fuel 17:1062–1067CrossRef
go back to reference Chaube VD (2004) Benzylation of benzene to diphenylmethane using zeolite catalysts. Catal Commun 5:321–326 Chaube VD (2004) Benzylation of benzene to diphenylmethane using zeolite catalysts. Catal Commun 5:321–326
go back to reference Chauvatcharin S, Siripatana C, Seki T, Takagi M, Yoshida T (1998) Metabolisms analysis and on-line physiological state diagnosis of acetone–butanol fermentation. Biotechnol Bioeng 58:561–571CrossRef Chauvatcharin S, Siripatana C, Seki T, Takagi M, Yoshida T (1998) Metabolisms analysis and on-line physiological state diagnosis of acetone–butanol fermentation. Biotechnol Bioeng 58:561–571CrossRef
go back to reference Cigizoglu KB, Ozaklam TK (1997) Use of sunflower oil as an alternative fuel for diesel engines. Energy Source 19:559–566CrossRef Cigizoglu KB, Ozaklam TK (1997) Use of sunflower oil as an alternative fuel for diesel engines. Energy Source 19:559–566CrossRef
go back to reference Coll R, Udas S, Jacoby WA (2001) Conversion of the rosin acid fraction of crude tall oil into fuels and chemicals. Energy Fuel 15:1166–1172CrossRef Coll R, Udas S, Jacoby WA (2001) Conversion of the rosin acid fraction of crude tall oil into fuels and chemicals. Energy Fuel 15:1166–1172CrossRef
go back to reference Copel Distribuição SA, Vencedores Da Chamada Pública (2009) List of winners of a tender to sell electricity to the grid in the state of Paraná, Brazil Copel Distribuição SA, Vencedores Da Chamada Pública (2009) List of winners of a tender to sell electricity to the grid in the state of Paraná, Brazil
go back to reference Cornland D, Johnson FX, Yamba F, Chidumayo EN, Morales M, Kalumiana O, Chidumayo SBM (2001) Sugarcane resources for sustainable development: a case study in Luena, Zambia. Stockholm Environment Institute, Stockholm Cornland D, Johnson FX, Yamba F, Chidumayo EN, Morales M, Kalumiana O, Chidumayo SBM (2001) Sugarcane resources for sustainable development: a case study in Luena, Zambia. Stockholm Environment Institute, Stockholm
go back to reference Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRef Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRef
go back to reference Cvengroš J, Malík L, Košík M, Šurina I (1985) Fractionation of tall oil. Chem Prum 35:542–545 Cvengroš J, Malík L, Košík M, Šurina I (1985) Fractionation of tall oil. Chem Prum 35:542–545
go back to reference Davis R, Aden A, Pienkos P (2001) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRef Davis R, Aden A, Pienkos P (2001) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRef
go back to reference Demirbas A (2004) Hydrogen rich gas from fruit shells via supercritical water extraction. Int J Hydrog Energy 29:1237–1243CrossRef Demirbas A (2004) Hydrogen rich gas from fruit shells via supercritical water extraction. Int J Hydrog Energy 29:1237–1243CrossRef
go back to reference Deshpande AP, Kulkarni K, Kulkarni AD (2011) Supercritical fluid technology in biodiesel production. Chem Mat Res 1:27–32 Deshpande AP, Kulkarni K, Kulkarni AD (2011) Supercritical fluid technology in biodiesel production. Chem Mat Res 1:27–32
go back to reference Diasakou M, Louloudi A, Papayannakos N (1998) Kinetics of the non-catalytic transesterification of soybean oil. Fuel 77:1297–1302CrossRef Diasakou M, Louloudi A, Papayannakos N (1998) Kinetics of the non-catalytic transesterification of soybean oil. Fuel 77:1297–1302CrossRef
go back to reference Domínguez A, Fernández Y, Fidalgo B, Pís JJ, Menéndez JA (2008) Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 70:397–403CrossRef Domínguez A, Fernández Y, Fidalgo B, Pís JJ, Menéndez JA (2008) Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 70:397–403CrossRef
go back to reference Doornbosch R, Steenblik R (2007) Biofuels: is the cure worse than the disease? Roundtable on sustainable development, OECD (Organization for Economic Co-operation and Development), 11-12 September, Paris, p 57 Doornbosch R, Steenblik R (2007) Biofuels: is the cure worse than the disease? Roundtable on sustainable development, OECD (Organization for Economic Co-operation and Development), 11-12 September, Paris, p 57
go back to reference Dorian JP, Franssen HT, Simbeck DR (2006) Global challenges in energy. Energy Policy 34:1984–1991CrossRef Dorian JP, Franssen HT, Simbeck DR (2006) Global challenges in energy. Energy Policy 34:1984–1991CrossRef
go back to reference Easterly JL (2002) Assessment of bio-oil as a replacement for heating oil. Easterly consulting for Northeast regional biomass program, CONEG Policy Research Center, Inc Easterly JL (2002) Assessment of bio-oil as a replacement for heating oil. Easterly consulting for Northeast regional biomass program, CONEG Policy Research Center, Inc
go back to reference ESMAP (Energy Sector Management Assistance Programme, World Bank) (2005) Advancing bioenergy for sustainable development—Guideline for Policy-makers and Investors. Report 300/05 ESMAP (Energy Sector Management Assistance Programme, World Bank) (2005) Advancing bioenergy for sustainable development—Guideline for Policy-makers and Investors. Report 300/05
go back to reference Ezeji TC, Qureshi N, Blaschek HP (2003) Production of butanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603CrossRef Ezeji TC, Qureshi N, Blaschek HP (2003) Production of butanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603CrossRef
go back to reference Fehrenbacher K (2012) Giga Omni Media (GigaOM), Inc. San Francisco Fehrenbacher K (2012) Giga Omni Media (GigaOM), Inc. San Francisco
go back to reference Flanagan J, Kortegaard K, Pinder DN, Rades T, Singh H (2006) Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocoll 20:253–260CrossRef Flanagan J, Kortegaard K, Pinder DN, Rades T, Singh H (2006) Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocoll 20:253–260CrossRef
go back to reference Fletcher PDI, Morris JS (1995) Turbidity of oil-in water microemulsion droplets stabilized by nonionic surfactants. Colloid Surf A: Physicochem Eng Aspects 98:147–154CrossRef Fletcher PDI, Morris JS (1995) Turbidity of oil-in water microemulsion droplets stabilized by nonionic surfactants. Colloid Surf A: Physicochem Eng Aspects 98:147–154CrossRef
go back to reference Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1985) The acetone-butanol fermentation on glucose and xylose: regulation and kinetics in batch cultures. Biotechnol Bioeng 28:160–166CrossRef Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1985) The acetone-butanol fermentation on glucose and xylose: regulation and kinetics in batch cultures. Biotechnol Bioeng 28:160–166CrossRef
go back to reference Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRef Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628CrossRef
go back to reference García V, Päkkilä J, Ojamo H, Muurinen E, Keiski RL (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energy Rev 15:964–980CrossRef García V, Päkkilä J, Ojamo H, Muurinen E, Keiski RL (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energy Rev 15:964–980CrossRef
go back to reference Goering CE, Schwab AW, Campion RM, Pryde EH (1983) Soyoil-ethanol microemulsions as diesel fuel. Trans ASAE 26:1602–1607 Goering CE, Schwab AW, Campion RM, Pryde EH (1983) Soyoil-ethanol microemulsions as diesel fuel. Trans ASAE 26:1602–1607
go back to reference Griffith WL, Compere AL, Dorsey GF, West BH (1990) High alcohol microemulsion fuel performance in a diesel engine. SAE paper 902101, Patent (Patent # 5,746,783) Griffith WL, Compere AL, Dorsey GF, West BH (1990) High alcohol microemulsion fuel performance in a diesel engine. SAE paper 902101, Patent (Patent # 5,746,783)
go back to reference Groot WJ, van der Lans RGJM, Luyben KCAM (1992) Technologies for butanol recovery integrated with fermentations. Process Biochem 27:61–75CrossRef Groot WJ, van der Lans RGJM, Luyben KCAM (1992) Technologies for butanol recovery integrated with fermentations. Process Biochem 27:61–75CrossRef
go back to reference Haas MJ (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86:1087–1096CrossRef Haas MJ (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Process Technol 86:1087–1096CrossRef
go back to reference Hebbal OD, Vijaya K, Reddy K, Rajagopal KA (2006) Performance characteristics of a diesel engine with Deccan Hemp oil. Fuel 85:2187–2194CrossRef Hebbal OD, Vijaya K, Reddy K, Rajagopal KA (2006) Performance characteristics of a diesel engine with Deccan Hemp oil. Fuel 85:2187–2194CrossRef
go back to reference Heyne S, Seemann M, Harvey S (2010) Integration study for alternative methanation technologies for the production of synthetic natural gas from gasified biomass. Chem Eng Trans 21:409–414 Heyne S, Seemann M, Harvey S (2010) Integration study for alternative methanation technologies for the production of synthetic natural gas from gasified biomass. Chem Eng Trans 21:409–414
go back to reference Hodge C (2006) Chemistry and emissions of NExBTL. A report prepared for UC Davis, CARB & CEC Meetings on behalf of Neste Oil, California Hodge C (2006) Chemistry and emissions of NExBTL. A report prepared for UC Davis, CARB & CEC Meetings on behalf of Neste Oil, California
go back to reference Honkanen S (2008) Feasibility and market opportunities, a technical report to the World LP Gas Association, Fuels of the Future. Case HVO Renewable Dsl. In: 6th international congress for biofuels of BBE and UFOP, Berlin, 1–2 Dec 2008 Honkanen S (2008) Feasibility and market opportunities, a technical report to the World LP Gas Association, Fuels of the Future. Case HVO Renewable Dsl. In: 6th international congress for biofuels of BBE and UFOP, Berlin, 1–2 Dec 2008
go back to reference Hosier R, Svenningson PJ (1987) Biomass briquettes in the Dominican Republic part I: social and economic feasibility. Biomass 13:199–217CrossRef Hosier R, Svenningson PJ (1987) Biomass briquettes in the Dominican Republic part I: social and economic feasibility. Biomass 13:199–217CrossRef
go back to reference Hunter HF (1996) Method for preparing an alcohol modified vegetable oil diesel fuel. Patent 5380343 Hunter HF (1996) Method for preparing an alcohol modified vegetable oil diesel fuel. Patent 5380343
go back to reference IEA (International Energy Agency) (2010) World energy outlook 2010. International Energy Agency Publications, Paris IEA (International Energy Agency) (2010) World energy outlook 2010. International Energy Agency Publications, Paris
go back to reference Joelianingsih MH, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan A, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: Kinetic study. Renew Energy 33:1629–1636CrossRef Joelianingsih MH, Hagiwara S, Nabetani H, Sagara Y, Soerawidjaya TH, Tambunan A, Abdullah K (2008) Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: Kinetic study. Renew Energy 33:1629–1636CrossRef
go back to reference Jones SB, Valkenburg C, Walton C, Elliot DC, Holladay JE, Stevens DJ, Kinchin C, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Pacific Northwest National Laboratory, Richland Jones SB, Valkenburg C, Walton C, Elliot DC, Holladay JE, Stevens DJ, Kinchin C, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Pacific Northwest National Laboratory, Richland
go back to reference Joshi RM, Pegg MG (2007) Flow properties of biodiesel fuel blends at low temperatures. Fuel 86:143–151CrossRef Joshi RM, Pegg MG (2007) Flow properties of biodiesel fuel blends at low temperatures. Fuel 86:143–151CrossRef
go back to reference Jungbluth N, Frischknecht R, FaistEmmenegger M, Steiner R, Tuchschmid M (2007) Life cycle assessment of BTL-fuel production: life cycle impact assessment and interpretation. Deliverables: D5.2.10 Jungbluth N, Frischknecht R, FaistEmmenegger M, Steiner R, Tuchschmid M (2007) Life cycle assessment of BTL-fuel production: life cycle impact assessment and interpretation. Deliverables: D5.2.10
go back to reference Kersten SRA, van Swaaij WP, Lefferts L, Seshan K (2007) In: Centi G, van Santen RA (eds) Catalysis for renewables. Wiley-VCH, Germany Kersten SRA, van Swaaij WP, Lefferts L, Seshan K (2007) In: Centi G, van Santen RA (eds) Catalysis for renewables. Wiley-VCH, Germany
go back to reference Kim S, Dale B (2002) Allocation procedure in ethanol production system from corn grain: I. system expansion. Int J Life Cycle Assess 7:237–243CrossRef Kim S, Dale B (2002) Allocation procedure in ethanol production system from corn grain: I. system expansion. Int J Life Cycle Assess 7:237–243CrossRef
go back to reference Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80:53–63CrossRef Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of bio-diesels from various bio-oils. Bioresour Technol 80:53–63CrossRef
go back to reference Lappas AA, Bezergianni S, Vasalos IA (2009) Production of biofuels via coprocessing in conventional refining processes. Catal Today 145:55–62CrossRef Lappas AA, Bezergianni S, Vasalos IA (2009) Production of biofuels via coprocessing in conventional refining processes. Catal Today 145:55–62CrossRef
go back to reference Larson ED (2008) Biofuel production technologies: status, prospects and implications for trade and development. 2008 United Nations Conference on Trade and Development (UNCTAD) Larson ED (2008) Biofuel production technologies: status, prospects and implications for trade and development. 2008 United Nations Conference on Trade and Development (UNCTAD)
go back to reference Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuel 24:5235–5243CrossRef Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuel 24:5235–5243CrossRef
go back to reference Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 43:58–62CrossRef Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 43:58–62CrossRef
go back to reference Lif A, Holmberg K (2006) Water-in-diesel emulsions and related systems. Adv Colloid Interface Sci 123–126:321–329 Lif A, Holmberg K (2006) Water-in-diesel emulsions and related systems. Adv Colloid Interface Sci 123–126:321–329
go back to reference Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in malaysia: an overview. Renew Sust Energ Rev 14:938–954 Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in malaysia: an overview. Renew Sust Energ Rev 14:938–954
go back to reference Lin SY, Harada M, Suzuki Y, Hatano H (2004) Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (I) gas products. Fuel 83:869–874CrossRef Lin SY, Harada M, Suzuki Y, Hatano H (2004) Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (I) gas products. Fuel 83:869–874CrossRef
go back to reference Lin SY, Harada M, Suzuki Y, Hatano H (2005) Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energy Conv Manage 46:869–880CrossRef Lin SY, Harada M, Suzuki Y, Hatano H (2005) Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING). Energy Conv Manage 46:869–880CrossRef
go back to reference Liu Y, Lotero E, Goodwin JG, Mo X (2007) Transesterification of poultry fat with methanol using Mg-A1 hydrotalcite derived catalysts. Appl Catal A 331:138–148CrossRef Liu Y, Lotero E, Goodwin JG, Mo X (2007) Transesterification of poultry fat with methanol using Mg-A1 hydrotalcite derived catalysts. Appl Catal A 331:138–148CrossRef
go back to reference Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466CrossRef Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466CrossRef
go back to reference Machacon HTC, Seiichi S, Takao K, Hisao N (2001) Performance and emission characteristics of a diesel engine fueled with coconut oil—diesel fuel blend. Biomas Bioenergy 20:63–69CrossRef Machacon HTC, Seiichi S, Takao K, Hisao N (2001) Performance and emission characteristics of a diesel engine fueled with coconut oil—diesel fuel blend. Biomas Bioenergy 20:63–69CrossRef
go back to reference Mansur MC, O’Donnell MK, Rehmann MS, Zohaib M (2010) ABE fermentation of sugar in Brazil. Senior Design Reports (CBE), Department of Chemical & Biomolecular Engineering, University of Pennsylvania Mansur MC, O’Donnell MK, Rehmann MS, Zohaib M (2010) ABE fermentation of sugar in Brazil. Senior Design Reports (CBE), Department of Chemical & Biomolecular Engineering, University of Pennsylvania
go back to reference Marchetti JM, Miguel VU, Errazu AF (2008) Techno-economic study of different alternatives for biodiesel production. Fuel Process Technol 89:740–748CrossRef Marchetti JM, Miguel VU, Errazu AF (2008) Techno-economic study of different alternatives for biodiesel production. Fuel Process Technol 89:740–748CrossRef
go back to reference Marland G (2010) Accounting for carbon dioxide emissions from bioenergy systems. J Ind Ecol 14:866–869CrossRef Marland G (2010) Accounting for carbon dioxide emissions from bioenergy systems. J Ind Ecol 14:866–869CrossRef
go back to reference Martin M, Prithviraj D (2011) Performance of preheated cotton seed oil and diesel fuel blends in a compression ignition engine. Jordan J Mechan Ind Eng 5:235–240 Martin M, Prithviraj D (2011) Performance of preheated cotton seed oil and diesel fuel blends in a compression ignition engine. Jordan J Mechan Ind Eng 5:235–240
go back to reference Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48:119–126CrossRef Maschio G, Lucchesi A, Stoppato G (1994) Production of syngas from biomass. Bioresour Technol 48:119–126CrossRef
go back to reference Mittelbach M, Gangl S (2001) Long storage stability of biodiesel made from rapeseed and used frying oil. J Am Oil Chem Soc 78:573–577CrossRef Mittelbach M, Gangl S (2001) Long storage stability of biodiesel made from rapeseed and used frying oil. J Am Oil Chem Soc 78:573–577CrossRef
go back to reference Moser BR (2009) Biodiesel production, properties and feedstocks. In Vitro Cell Dev Biol-Plant 45:229–266CrossRef Moser BR (2009) Biodiesel production, properties and feedstocks. In Vitro Cell Dev Biol-Plant 45:229–266CrossRef
go back to reference Murayama T (1984) Low carbon flower build -up, low smoke and efficient diesel operation with vegetable oil by conversion into monoesters and blending with diesel or alcohol. SAE 5:292–301 Murayama T (1984) Low carbon flower build -up, low smoke and efficient diesel operation with vegetable oil by conversion into monoesters and blending with diesel or alcohol. SAE 5:292–301
go back to reference Nasikin M, Susanto BH, Hirsaman MA, Wijanarko A (2009) Biogasoline from palm oil by simultaneous cracking and hydrogenation reaction over Nimo/zeolite catalyst. World Appl Sci 5:74–79 Nasikin M, Susanto BH, Hirsaman MA, Wijanarko A (2009) Biogasoline from palm oil by simultaneous cracking and hydrogenation reaction over Nimo/zeolite catalyst. World Appl Sci 5:74–79
go back to reference Neumann GT, Hicks JC (2012) Novel Hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catal 2:642–646CrossRef Neumann GT, Hicks JC (2012) Novel Hierarchical cerium-incorporated MFI zeolite catalysts for the catalytic fast pyrolysis of lignocellulosic biomass. ACS Catal 2:642–646CrossRef
go back to reference Nguyen T, Do L, Sabatini DA (2010) Biodiesel production via peanut oil extraction using diesel-based reverse-micellar microemulsions. Fuel 89:2285–2291CrossRef Nguyen T, Do L, Sabatini DA (2010) Biodiesel production via peanut oil extraction using diesel-based reverse-micellar microemulsions. Fuel 89:2285–2291CrossRef
go back to reference Niehaus RA, Goering CE, Savage LD, Sorenson SC (1985) Cracked soybean oil as a fuel for diesel engine. ASAE Paper no. 85-1560 Niehaus RA, Goering CE, Savage LD, Sorenson SC (1985) Cracked soybean oil as a fuel for diesel engine. ASAE Paper no. 85-1560
go back to reference OECD-FAO (Organization for Economic Cooperation and Development-Food and Agriculture Organization) (2011) OECD-FAO agricultural outlook 2011–2020 OECD-FAO (Organization for Economic Cooperation and Development-Food and Agriculture Organization) (2011) OECD-FAO agricultural outlook 2011–2020
go back to reference Ofori-Boateng C, Kwofie EM (2009) Water scrubbing: a better option for biogas purification for effective storage. World Appl Sci 5:122–125 Ofori-Boateng C, Kwofie EM (2009) Water scrubbing: a better option for biogas purification for effective storage. World Appl Sci 5:122–125
go back to reference Ofori-Boateng C, Lee KT (2011) Feasibility of jatropha oil for biodiesel: economic analysis. In: Proceedings of the world’s renewable energy congress, Linkoping, Sweden, 9-13th May, 2011. Available at http://dx.doi.org/10.3384/ecp11057463. Accessed on 28th July, 2012 Ofori-Boateng C, Lee KT (2011) Feasibility of jatropha oil for biodiesel: economic analysis. In: Proceedings of the world’s renewable energy congress, Linkoping, Sweden, 9-13th May, 2011. Available at http://​dx.​doi.​org/​10.​3384/​ecp11057463. Accessed on 28th July, 2012
go back to reference Panigrahi S, Dalai AK, Chaudhari ST, Bakhshi NN (2003) Synthesis gas production from steam gasification of biomass-derived oil. Energy Fuel 17:637–642CrossRef Panigrahi S, Dalai AK, Chaudhari ST, Bakhshi NN (2003) Synthesis gas production from steam gasification of biomass-derived oil. Energy Fuel 17:637–642CrossRef
go back to reference Phillips JA, Humphrey AE (1983) An overview of process technology for the production of liquid fuels and chemical feedstocks via fermentation. In: Wise DL (eds) Organic chemicals from biomass, The Benjamin/Cummings Publishing Co, Inc, Menlo Park, California pp 249–304 Phillips JA, Humphrey AE (1983) An overview of process technology for the production of liquid fuels and chemical feedstocks via fermentation. In: Wise DL (eds) Organic chemicals from biomass, The Benjamin/Cummings Publishing Co, Inc, Menlo Park, California pp 249–304
go back to reference Pramanik K (2003) Properties and use of Jatropha Curcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28:239–248 Pramanik K (2003) Properties and use of Jatropha Curcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28:239–248
go back to reference Prasad CHSN (2010) Experimental investigation on performance and emission characteristics of diesel engine using bio-diesel as an alternate fuel. Ph.D Thesis, Faculty of Mechanical Engineering, JNTUH College of Engineering, Hyderabad Prasad CHSN (2010) Experimental investigation on performance and emission characteristics of diesel engine using bio-diesel as an alternate fuel. Ph.D Thesis, Faculty of Mechanical Engineering, JNTUH College of Engineering, Hyderabad
go back to reference Qureshi N, Meagher MM, Huang J, Hutkins RW (2002) Acetone butanol ethanol (ABE) recov- ery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102CrossRef Qureshi N, Meagher MM, Huang J, Hutkins RW (2002) Acetone butanol ethanol (ABE) recov- ery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102CrossRef
go back to reference Radich A (2004) Biodiesel performance, cost and use, energy information administration. United States Department of Energy, Washington Radich A (2004) Biodiesel performance, cost and use, energy information administration. United States Department of Energy, Washington
go back to reference Ramey D, Yang S (2004) Production of butyric acid and butanol from biomass. Final report, US Department of Energy, Ohio Ramey D, Yang S (2004) Production of butyric acid and butanol from biomass. Final report, US Department of Energy, Ohio
go back to reference Rao ND, Premkumar BS, Yohan M (2012) Performance and emission characteristics of straight vegetable oil-ethanol emulsion in a compression ignition engine. ARPN J Eng Appl Sci 7:1819–6608 Rao ND, Premkumar BS, Yohan M (2012) Performance and emission characteristics of straight vegetable oil-ethanol emulsion in a compression ignition engine. ARPN J Eng Appl Sci 7:1819–6608
go back to reference Reaney M (1997) Agriculture and agri-food Canada, Saskatoon, Saskatchewan, Personel Communications Reaney M (1997) Agriculture and agri-food Canada, Saskatoon, Saskatchewan, Personel Communications
go back to reference REN21 (Renewable Energy Policy Network for the 21st century) (2010) Renewables 2010, Global status report, REN21 Secretariat, Paris, France REN21 (Renewable Energy Policy Network for the 21st century) (2010) Renewables 2010, Global status report, REN21 Secretariat, Paris, France
go back to reference Richards B, Herndon FG, Jewell WJ, Cummings RJ, White TE (1994) In situ methane enrichment in methanogenic energy crop digesters. Biomass Bioenergy 6:274–275CrossRef Richards B, Herndon FG, Jewell WJ, Cummings RJ, White TE (1994) In situ methane enrichment in methanogenic energy crop digesters. Biomass Bioenergy 6:274–275CrossRef
go back to reference Rosca R, Zugravel M (1997) The use of sunflower oil in diesel engines. SAE Paper no. 972979 Rosca R, Zugravel M (1997) The use of sunflower oil in diesel engines. SAE Paper no. 972979
go back to reference Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231CrossRef Saka S, Kusdiana D (2001) Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80:225–231CrossRef
go back to reference Sapvan SM, Nasjuki HH, Azlan A (1996) Use of palm oil as diesel fuel substitute. J Power Energy 210:47–53CrossRef Sapvan SM, Nasjuki HH, Azlan A (1996) Use of palm oil as diesel fuel substitute. J Power Energy 210:47–53CrossRef
go back to reference Sato S, Lin SY, Suzuki Y, Hatano H (2003) Hydrogen production from heavy oil in the presence of calcium hydroxide. Fuel 82:561–567CrossRef Sato S, Lin SY, Suzuki Y, Hatano H (2003) Hydrogen production from heavy oil in the presence of calcium hydroxide. Fuel 82:561–567CrossRef
go back to reference Schlick ML, Hanna MA, Schnstock JL (1988) Soybean and sunflower oil performance in a diesel engine. Trans ASAE 31:1345–1349 Schlick ML, Hanna MA, Schnstock JL (1988) Soybean and sunflower oil performance in a diesel engine. Trans ASAE 31:1345–1349
go back to reference Schwab AW, Bagby MO (1987) Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378CrossRef Schwab AW, Bagby MO (1987) Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 66:1372–1378CrossRef
go back to reference Shapouri H, DuIeld JA, Wang M (2002) The energy balance of corn ethanol: an update. Agricultural economic report 813. US Department of Agriculture, Washington Shapouri H, DuIeld JA, Wang M (2002) The energy balance of corn ethanol: an update. Agricultural economic report 813. US Department of Agriculture, Washington
go back to reference Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142CrossRef Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142CrossRef
go back to reference Shrestha D, Gerpen JV (2010) Biodiesel from oilseed crops, In: Singh BP (ed) Industrial crops and uses. CABI, Wallingford, pp 512, 140–156. ISBN-13 9781845936167 Shrestha D, Gerpen JV (2010) Biodiesel from oilseed crops, In: Singh BP (ed) Industrial crops and uses. CABI, Wallingford, pp 512, 140–156. ISBN-13 9781845936167
go back to reference Solantausta Y, Nylund N, Gust S (1994) Use of pyrolysed oil in a test diesel engine to study the feasibility of a diesel power plant concept. Biomass Bioenergy 7:297–306CrossRef Solantausta Y, Nylund N, Gust S (1994) Use of pyrolysed oil in a test diesel engine to study the feasibility of a diesel power plant concept. Biomass Bioenergy 7:297–306CrossRef
go back to reference Song YC, Kwon SJ, Woo JH (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res 38:1653–1662CrossRef Song YC, Kwon SJ, Woo JH (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res 38:1653–1662CrossRef
go back to reference Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energy Rev 4:111–133CrossRef Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energy Rev 4:111–133CrossRef
go back to reference Tadashi Y (1984) Low carbon build up, low smoke and efficient diesel operation with vegetable oil by conversion to monoesters and blending of diesel or alcohols. SAE 841161 Tadashi Y (1984) Low carbon build up, low smoke and efficient diesel operation with vegetable oil by conversion to monoesters and blending of diesel or alcohols. SAE 841161
go back to reference Tamunaidu P, Bhatia S (2007) Catalytic cracking of palm oil for the production of biofuels: optimization studies. Bioresour Technol 98:3593–3601CrossRef Tamunaidu P, Bhatia S (2007) Catalytic cracking of palm oil for the production of biofuels: optimization studies. Bioresour Technol 98:3593–3601CrossRef
go back to reference Tilche A, Galatoa M (2007) The potential of anerobic digestion for reducing GHG emissions. In: 11th world congress on anearobic digestion, Brisbane, 23–27 Sept 2007 Tilche A, Galatoa M (2007) The potential of anerobic digestion for reducing GHG emissions. In: 11th world congress on anearobic digestion, Brisbane, 23–27 Sept 2007
go back to reference Tunå P (2008) Substitute natural gas from biomass gasification. Synopsis of Master Thesis, Department of Chemical Engineering, Lund University, Sweden Tunå P (2008) Substitute natural gas from biomass gasification. Synopsis of Master Thesis, Department of Chemical Engineering, Lund University, Sweden
go back to reference Vellguth G (1983) Performance of vegetable oil and their monoesters as fuels for diesel engines. SAE 831358 Vellguth G (1983) Performance of vegetable oil and their monoesters as fuels for diesel engines. SAE 831358
go back to reference Wang YD, AZ-Shemmeri T, Eames P, McMullan J, Hewitt N, Huang Y (2006) An experimental investigation of the performance and gaseous exhaust emission of a diesel engine using blends of a vegetable oil. Appl Therm Eng 26:1684–1691 Wang YD, AZ-Shemmeri T, Eames P, McMullan J, Hewitt N, Huang Y (2006) An experimental investigation of the performance and gaseous exhaust emission of a diesel engine using blends of a vegetable oil. Appl Therm Eng 26:1684–1691
go back to reference Webber ME, Amanda DC (2008) Cow power. In: The news: short news items of interest to the scientific community. Science and children os 46.1:13. Gale, United States Webber ME, Amanda DC (2008) Cow power. In: The news: short news items of interest to the scientific community. Science and children os 46.1:13. Gale, United States
go back to reference Williams PT, Chishti HM (2000) Two stage pyrolysis of oil shale using a zeolite catalyst. J Anal Appl Pyrolysis 55:217–234CrossRef Williams PT, Chishti HM (2000) Two stage pyrolysis of oil shale using a zeolite catalyst. J Anal Appl Pyrolysis 55:217–234CrossRef
go back to reference WWI (Worldwatch Institute) (2006) Biofuels for transport: global potential and implications for energy and agriculture. Report prepared by Worldwatch Institute for the German Ministry of Food, Agriculture and Consumer Protection (BMELV) in coordination with the german agency for technical cooperation (GTZ) and german agency of renewable resources (FNR), Earthscan, London WWI (Worldwatch Institute) (2006) Biofuels for transport: global potential and implications for energy and agriculture. Report prepared by Worldwatch Institute for the German Ministry of Food, Agriculture and Consumer Protection (BMELV) in coordination with the german agency for technical cooperation (GTZ) and german agency of renewable resources (FNR), Earthscan, London
go back to reference Yoon SH, Park SH, Lee CK (2008) Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures. Energy Fuel 22:652–656CrossRef Yoon SH, Park SH, Lee CK (2008) Experimental investigation on the fuel properties of biodiesel and its blends at various temperatures. Energy Fuel 22:652–656CrossRef
go back to reference Zhu B, Gikas P, Zhang R, Lord J, Jenkins B, Li X (2009) Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour Technol 100:1122–1129CrossRef Zhu B, Gikas P, Zhang R, Lord J, Jenkins B, Li X (2009) Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresour Technol 100:1122–1129CrossRef
go back to reference Zwart R, Boerrigter H, Van der Drift A (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products. Energy fuel 20:2192–2197CrossRef Zwart R, Boerrigter H, Van der Drift A (2006) The impact of biomass pretreatment on the feasibility of overseas biomass conversion to Fischer-Tropsch products. Energy fuel 20:2192–2197CrossRef
Metadata
Title
Biofuels: Production Technologies, Global Profile, and Market Potentials
Authors
Keat Teong Lee
Cynthia Ofori-Boateng
Copyright Year
2013
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-4451-70-3_2