Skip to main content
Top

2021 | OriginalPaper | Chapter

3. Comparative Analysis of the Hierarchical 3D-SVD and Reduced Inverse Tensor Pyramid in Regard to Famous 3D Orthogonal Transforms

Authors : Roumen Kountchev, Roumiana Kountcheva

Published in: New Approaches for Multidimensional Signal Processing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work are presented two new approaches for hierarchical decomposition represented as tensors of size N × N × N for N = 2n, based on algorithms which (unlike the famous similar approaches) do not require iterative calculations. Instead, they use repetitive simple calculations in each hierarchical decomposition level. As a result, the computational complexity (CC) of the new hierarchical algorithms is lower than that of the iteration-based. In general, hierarchical decompositions are divided into two basic groups: statistical and deterministic. To the first group is assigned the algorithm hierarchical tensor SVD (HTSVD) based on the multiple calculation of the two-level SVD for the elementary tensor of size 2 × 2 × 2. The decomposition is executed by using the HTSVD in three orthogonal spatial directions simultaneously. The deterministic decompositions have lower CC than the statistical, but they do not ensure full decorrelation between the components of the 3D decompositions. In this group are the famous orthogonal transforms 3D fast Fourier transform (3D-FFT), 3D discrete cosine transform (3D-DCT), 3D discrete wavelet transform (3D-DWT), 3D contourlet discrete transform (3D-CDT), 3D shearlet discrete transform (3D-SDT), etc., and also, the algorithm 3D reduced inverse spectrum pyramid (3D-RISP). The last is distinguished by its lower CC and the high energy concentration in the first decomposition components. To achieve this, for the basic tensor of size 2n × 2n × 2n is executed the 3D fast truncated Walsh–Hadamard transform (3D-FTWHT). Significant advantage of 3D-RISP compared to the famous pyramidal decompositions of the kind 3D-DWT, 3D-CDT, 3D-SDT, etc., is the absence of 3D decimation and 3D interpolation which produce distortions in the restored tensor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Cichocki, A., Lee, N., Oseledets, I., Phan, A., Zhao, Q., Mandic, D.: Tensor networks for dimensionality reduction and large-scale optimization: Part 1. Low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4/5), 249–429 (2016). https://doi.org/https://doi.org/10.1561/2200000059. Cichocki, A., Lee, N., Oseledets, I., Phan, A., Zhao, Q., Mandic, D.: Tensor networks for dimensionality reduction and large-scale optimization: Part 1. Low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4/5), 249–429 (2016). https://​doi.​org/​https://​doi.​org/​10.​1561/​2200000059.
3.
go back to reference Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)MathSciNetCrossRef Sidiropoulos, N., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)MathSciNetCrossRef
4.
go back to reference Sakai, T., Sedukhin, S.: 3D Discrete Transforms with Cubical Data Decomposition on the IBM Blue Gene/Q. Technical Report 2013–001. Graduate School of Computer Science and Engineering, University of Aizu Tsuruga, Aizu-Wakamatsu City, Japan, pp. 1–31 https://doi.org/https://doi.org/10.1103/PhysRevLett.111.10700 (2013). Sakai, T., Sedukhin, S.: 3D Discrete Transforms with Cubical Data Decomposition on the IBM Blue Gene/Q. Technical Report 2013–001. Graduate School of Computer Science and Engineering, University of Aizu Tsuruga, Aizu-Wakamatsu City, Japan, pp. 1–31 https://​doi.​org/​https://​doi.​org/​10.​1103/​PhysRevLett.​111.​10700 (2013).
7.
go back to reference Zare, A., Ozdemir, A., Iwen, M., Aviyente, S.: Extension of PCA to Higher Order Data Structures: An Introduction to Tensors, Tensor Decompositions, and Tensor PCA. arXiv:1803.00704v2 [eess.SP] (2018). Zare, A., Ozdemir, A., Iwen, M., Aviyente, S.: Extension of PCA to Higher Order Data Structures: An Introduction to Tensors, Tensor Decompositions, and Tensor PCA. arXiv:​1803.​00704v2 [eess.SP] (2018).
11.
go back to reference Salmi, R., Richter, A., Koivunen, V.: Sequential unfolding SVD for tensors with applications in array signal processing. IEEE Trans. Signal Process. 57(12), 4719–4733 (2009). ISSN: 1053–587X. Salmi, R., Richter, A., Koivunen, V.: Sequential unfolding SVD for tensors with applications in array signal processing. IEEE Trans. Signal Process. 57(12), 4719–4733 (2009). ISSN: 1053–587X.
12.
go back to reference Kountchev, R., Kountcheva, R.: 3D image representation through hierarchical tensor decomposition based on SVD for elementary tensor of size 222. Int. J. WSEAS Trans. Signal Process. 12, 199–207 (2016) Kountchev, R., Kountcheva, R.: 3D image representation through hierarchical tensor decomposition based on SVD for elementary tensor of size 222. Int. J. WSEAS Trans. Signal Process. 12, 199–207 (2016)
13.
go back to reference Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, NJ (2007)MATH Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, NJ (2007)MATH
14.
go back to reference Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)MathSciNetCrossRef Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)MathSciNetCrossRef
15.
go back to reference Rao, K., Kim, D., Hwang, J.: Fast Fourier transform: Algorithms and Applications. Springer, Heidelberg, London, New York (2010)CrossRef Rao, K., Kim, D., Hwang, J.: Fast Fourier transform: Algorithms and Applications. Springer, Heidelberg, London, New York (2010)CrossRef
16.
go back to reference Goossens, B., Luong, H., Aelterman, J., Pizurica, A., Philips, W.: Efficient multiscale and multidirectional representation of 3D data using the 3D discrete shearlet transform. In: Papadakis, M, Ville, D., Goyal, V. (eds.) Proceedings of SPIE, Vol. 8138, pp. 81381Z–1–81381Z–13. Bellingham (2011). https://hdl.handle.net/1854/LU-2015272 Goossens, B., Luong, H., Aelterman, J., Pizurica, A., Philips, W.: Efficient multiscale and multidirectional representation of 3D data using the 3D discrete shearlet transform. In: Papadakis, M, Ville, D., Goyal, V. (eds.) Proceedings of SPIE, Vol. 8138, pp. 81381Z–1–81381Z–13. Bellingham (2011). https://​hdl.​handle.​net/​1854/​LU-2015272
17.
go back to reference Kountchev, R., Kountcheva, R.: Third-order tensor representation through Reduced inverse difference pyramid. In: International Conference on Creative Business for Smart and Sustainable Growth (CREBUS‘19), Sandanski, Bulgaria, |IEEE Xplore Digital Library (2019). https://doi.org/10.1109/CREBUS.2019.8840045 Kountchev, R., Kountcheva, R.: Third-order tensor representation through Reduced inverse difference pyramid. In: International Conference on Creative Business for Smart and Sustainable Growth (CREBUS‘19), Sandanski, Bulgaria, |IEEE Xplore Digital Library (2019). https://​doi.​org/​10.​1109/​CREBUS.​2019.​8840045
19.
go back to reference Kountchev, R., Mironov, R., Kountcheva, R.: Complexity evaluation of tensor decomposition using 3D inverse spectrum pyramid in respect of deterministic orthogonal transforms. Int. J. WSEAS Trans. Signal Process. 15, 142–148 (2019) Kountchev, R., Mironov, R., Kountcheva, R.: Complexity evaluation of tensor decomposition using 3D inverse spectrum pyramid in respect of deterministic orthogonal transforms. Int. J. WSEAS Trans. Signal Process. 15, 142–148 (2019)
Metadata
Title
Comparative Analysis of the Hierarchical 3D-SVD and Reduced Inverse Tensor Pyramid in Regard to Famous 3D Orthogonal Transforms
Authors
Roumen Kountchev
Roumiana Kountcheva
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4676-5_3