Skip to main content
Top

2015 | OriginalPaper | Chapter

22. Forecasting the Energy Consumption Using Neural Network Approach

Authors : Mohamed Bouabaz, Mourad Mordjaoui, Nabil Bouleknafet, Badreddine Belghoul

Published in: Progress in Clean Energy, Volume 1

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the use of neural network for predicting energy consumption in buildings and their expenditure. Application of artificial intelligence by the use of neural networks to predict the energy consumption for heating rehabilitated buildings is underscored by the need to develop a generic model that can be used for prediction of the consumption of the energy in buildings. The model presented for the prediction of the energy consumption of natural gas has been developed on the basis of data obtained for the winter period. Alternatively, a comparative economic study was conducted. An average error of the training phase for the model was 2.4 %, while the test phase error was 3.2 %. This indicates that the neural network model is presented successfully to predict the energy consumption by using natural gas as clean energy for heating buildings

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Entrop AG, Brouwers HJH, Reinders AHME (2010) Evaluation of energy performance indicators and financial aspects of energy saving techniques in residential real estate. Energy Build 42(5):618–629CrossRef Entrop AG, Brouwers HJH, Reinders AHME (2010) Evaluation of energy performance indicators and financial aspects of energy saving techniques in residential real estate. Energy Build 42(5):618–629CrossRef
2.
go back to reference Akande OK, Adebamowo MA (2010) Indoor thermal comfort for residential buildings in hot-dry climate in Nigeria. In: Proceedings of conference: adapting to change: new thinking on comfort Cumberland Lodge, Windsor, 2010 Akande OK, Adebamowo MA (2010) Indoor thermal comfort for residential buildings in hot-dry climate in Nigeria. In: Proceedings of conference: adapting to change: new thinking on comfort Cumberland Lodge, Windsor, 2010
3.
go back to reference Emsley MW, Lowe DJ, Duff AR, Harding A, Hickson A (2002) Data modelling and the application of a neural network approach to the prediction of total costs. Constr Manag Econ 20:465–472CrossRef Emsley MW, Lowe DJ, Duff AR, Harding A, Hickson A (2002) Data modelling and the application of a neural network approach to the prediction of total costs. Constr Manag Econ 20:465–472CrossRef
4.
go back to reference Bouabaz M, Hamami M (2008) A cost estimation model for repair bridges based on artificial neural networks. Am J Appl Sci 5(4):334–339CrossRef Bouabaz M, Hamami M (2008) A cost estimation model for repair bridges based on artificial neural networks. Am J Appl Sci 5(4):334–339CrossRef
5.
go back to reference Ansett M, Kreider JF (1993) Application of neural networking models to predict energy use. ASHRAE Trans 99(1):505–517 Ansett M, Kreider JF (1993) Application of neural networking models to predict energy use. ASHRAE Trans 99(1):505–517
6.
go back to reference Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5:373–401CrossRef Kalogirou SA (2001) Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 5:373–401CrossRef
7.
go back to reference Kreider JF, Claridge DE, Curtiss P, Haberl JS, Krarti M (1995) Building energy use prediction and system identification using recurrent networks. Trans ASME J Sol Energy Eng 117:161–166CrossRef Kreider JF, Claridge DE, Curtiss P, Haberl JS, Krarti M (1995) Building energy use prediction and system identification using recurrent networks. Trans ASME J Sol Energy Eng 117:161–166CrossRef
8.
go back to reference Breekweg MRB, Gruber P, Ahmed O (2000) Development of generalized neural network model to detect faults in building energy performance. ASHRAE Trans 43(72):61–93 Breekweg MRB, Gruber P, Ahmed O (2000) Development of generalized neural network model to detect faults in building energy performance. ASHRAE Trans 43(72):61–93
9.
go back to reference Melek Y, Sedat A (2005) Artificial neural networks application in building energy predictions and a case study for tropical climates. Int J Energy Res 29:891–901CrossRef Melek Y, Sedat A (2005) Artificial neural networks application in building energy predictions and a case study for tropical climates. Int J Energy Res 29:891–901CrossRef
10.
go back to reference Michelis-Tzanakou E (2011) Artificial neural networks: an overview. Netw Comput Neural Syst 22:208–230 Michelis-Tzanakou E (2011) Artificial neural networks: an overview. Netw Comput Neural Syst 22:208–230
11.
go back to reference Ashworth A, Skitmore RM (1982) Accuracy in estimating. Occasional paper no .27. Chartered Institute of Building, London Ashworth A, Skitmore RM (1982) Accuracy in estimating. Occasional paper no .27. Chartered Institute of Building, London
Metadata
Title
Forecasting the Energy Consumption Using Neural Network Approach
Authors
Mohamed Bouabaz
Mourad Mordjaoui
Nabil Bouleknafet
Badreddine Belghoul
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-16709-1_22