Skip to main content
Top
Published in: 3D Research 2/2018

01-06-2018 | 3DR Express

Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination

Authors: Fayçal Abbas, Mohamed Chaouki Babahenini

Published in: 3D Research | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Global illumination of natural scenes in real time like forests is one of the most complex problems to solve, because the multiple inter-reflections between the light and material of the objects composing the scene. The major problem that arises is the problem of visibility computation. In fact, the computing of visibility is carried out for all the set of leaves visible from the center of a given leaf, given the enormous number of leaves present in a tree, this computation performed for each leaf of the tree which also reduces performance. We describe a new approach that approximates visibility queries, which precede in two steps. The first step is to generate point cloud representing the foliage. We assume that the point cloud is composed of two classes (visible, not-visible) non-linearly separable. The second step is to perform a point cloud classification by applying the Gaussian radial basis function, which measures the similarity in term of distance between each leaf and a landmark leaf. It allows approximating the visibility requests to extract the leaves that will be used to calculate the amount of indirect illumination exchanged between neighbor leaves. Our approach allows efficiently treat the light exchanges in the scene of a forest, it allows a fast computation and produces images of good visual quality, all this takes advantage of the immense power of computation of the GPU.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J. (2012). The state of the art in interactive global illumination. In Computer graphics forum (Vol. 31, No. 1, pp. 160–188). Blackwell Publishing Ltd. Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J. (2012). The state of the art in interactive global illumination. In Computer graphics forum (Vol. 31, No. 1, pp. 160–188). Blackwell Publishing Ltd.
2.
go back to reference Bashford-Rogers, T., Debattista, K., Harvey, C., & Chalmers, A. (2011). Approximate visibility grids for interactive indirect illumination. In 2011 third international conference on games and virtual worlds for serious applications (VS-GAMES), (pp. 55–62). IEEE. Bashford-Rogers, T., Debattista, K., Harvey, C., & Chalmers, A. (2011). Approximate visibility grids for interactive indirect illumination. In 2011 third international conference on games and virtual worlds for serious applications (VS-GAMES), (pp. 55–62). IEEE.
3.
go back to reference Yu, I., Cox, A., Kim, M. H., Ritschel, T., Grosch, T., Dachsbacher, C., et al. (2009). Perceptual influence of approximate visibility in indirect illumination. ACM Transactions on Applied Perception (TAP), 6(4), 24. Yu, I., Cox, A., Kim, M. H., Ritschel, T., Grosch, T., Dachsbacher, C., et al. (2009). Perceptual influence of approximate visibility in indirect illumination. ACM Transactions on Applied Perception (TAP), 6(4), 24.
4.
go back to reference Apostu, O., Mora, F., Ghazanfarpour, D., & Aveneau, L. (2012). Analytic ambient occlusion using exact from-polygon visibility. Computers Graphics, 36(6), 727–739.CrossRef Apostu, O., Mora, F., Ghazanfarpour, D., & Aveneau, L. (2012). Analytic ambient occlusion using exact from-polygon visibility. Computers Graphics, 36(6), 727–739.CrossRef
5.
go back to reference Zhukov, S., Iones, A., & Kronin G. (1998). An ambient light illumination model. In G. Drettakis & N. Max (Eds.), Rendering techniques ’98. Eurographics. Vienna: Springer. Zhukov, S., Iones, A., & Kronin G. (1998). An ambient light illumination model. In G. Drettakis & N. Max (Eds.), Rendering techniques ’98. Eurographics. Vienna: Springer.
6.
go back to reference Hegeman, K., Premože, S., Ashikhmin, M., & Drettakis, G. (2006). Approximate ambient occlusion for trees. In Proceedings of the 2006 symposium on interactive 3D graphics and games (pp. 87–92). ACM. Hegeman, K., Premože, S., Ashikhmin, M., & Drettakis, G. (2006). Approximate ambient occlusion for trees. In Proceedings of the 2006 symposium on interactive 3D graphics and games (pp. 87–92). ACM.
7.
go back to reference Teng, J., Jaeger, M., & Hu, B. G. (2007). A fast ambient occlusion method for real-time plant rendering. Journal of Computer Science and Technology, 22(6), 859–866.CrossRef Teng, J., Jaeger, M., & Hu, B. G. (2007). A fast ambient occlusion method for real-time plant rendering. Journal of Computer Science and Technology, 22(6), 859–866.CrossRef
8.
go back to reference Boulanger, K., Bouatouch, K., & Pattanaik, S. (2008). Rendering trees with indirect lighting in real time. In Computer graphics forum (Vol. 27, No. 4, pp. 1189–1198). Blackwell Publishing Ltd. Boulanger, K., Bouatouch, K., & Pattanaik, S. (2008). Rendering trees with indirect lighting in real time. In Computer graphics forum (Vol. 27, No. 4, pp. 1189–1198). Blackwell Publishing Ltd.
9.
go back to reference Bruneton, E., & Neyret, F. (2012). Real-time realistic rendering and lighting of forests. In Computer graphics forum (Vol. 31, No. 2 pt 1, pp. 373–382). Blackwell Publishing Ltd. Bruneton, E., & Neyret, F. (2012). Real-time realistic rendering and lighting of forests. In Computer graphics forum (Vol. 31, No. 2 pt 1, pp. 373–382). Blackwell Publishing Ltd.
10.
go back to reference Strahler, A. H., & Jupp, D. L. (1990). Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics. Remote Sensing of Environment, 34(3), 153–166.CrossRef Strahler, A. H., & Jupp, D. L. (1990). Modeling bidirectional reflectance of forests and woodlands using Boolean models and geometric optics. Remote Sensing of Environment, 34(3), 153–166.CrossRef
11.
go back to reference Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 276–292.CrossRef Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 276–292.CrossRef
12.
go back to reference Schaaf, C. B., Li, X., & Strahler, A. H. (1994). Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Transactions on Geoscience and Remote Sensing, 32(6), 1186–1193.CrossRef Schaaf, C. B., Li, X., & Strahler, A. H. (1994). Topographic effects on bidirectional and hemispherical reflectances calculated with a geometric-optical canopy model. IEEE Transactions on Geoscience and Remote Sensing, 32(6), 1186–1193.CrossRef
13.
go back to reference Reeves, W. T., & Blau, R. (1985). Approximate and probabilistic algorithms for shading and rendering structured particle systems. In ACM siggraph computer graphics (Vol. 19, No. 3, pp. 313–322). ACM. Reeves, W. T., & Blau, R. (1985). Approximate and probabilistic algorithms for shading and rendering structured particle systems. In ACM siggraph computer graphics (Vol. 19, No. 3, pp. 313–322). ACM.
14.
go back to reference Max, N., & Ohsaki, K. (1995). Rendering trees from precomputed Z-buffer views. In Rendering techniques’ 95 (pp. 74–81). Springer, Vienna. Max, N., & Ohsaki, K. (1995). Rendering trees from precomputed Z-buffer views. In Rendering techniques’ 95 (pp. 74–81). Springer, Vienna.
15.
go back to reference Qin, X., Nakamae, E., Tadamura, K., & Nagai, Y. (2003). Fast photo-realistic rendering of trees in daylight. In Computer graphics forum (Vol. 22, No. 3, pp. 243–252). Blackwell Publishing, Inc. Qin, X., Nakamae, E., Tadamura, K., & Nagai, Y. (2003). Fast photo-realistic rendering of trees in daylight. In Computer graphics forum (Vol. 22, No. 3, pp. 243–252). Blackwell Publishing, Inc.
16.
go back to reference Geist, R., Steele, J. (2008). A lighting model for fast rendering of forest ecosystems. In IEEE symposium on interactive ray tracing, 2008, RT 2008 (pp. 99–106). IEEE. Geist, R., Steele, J. (2008). A lighting model for fast rendering of forest ecosystems. In IEEE symposium on interactive ray tracing, 2008, RT 2008 (pp. 99–106). IEEE.
17.
go back to reference Sloan, P. P., Kautz, J., & Snyder, J. (2002). Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proceedings of the 29th annual conference on computer graphics and interactive techniques (Vol. 21, No. 3, pp. 527–536). ACM. Sloan, P. P., Kautz, J., & Snyder, J. (2002). Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proceedings of the 29th annual conference on computer graphics and interactive techniques (Vol. 21, No. 3, pp. 527–536). ACM.  
18.
go back to reference Cabral, B. K., Olano, M., & Nemec, P. (2004). U.S. Patent No. 6,697,062. Washington, DC: U.S. Patent and Trademark Office. Cabral, B. K., Olano, M., & Nemec, P. (2004). U.S. Patent No. 6,697,062. Washington, DC: U.S. Patent and Trademark Office.
19.
go back to reference Ng, R., Ramamoorthi, R., & Hanrahan, P. (2004). Triple product wavelet integrals for all-frequency relighting. ACM Transactions on Graphics (TOG), 23(3), 477–487.CrossRef Ng, R., Ramamoorthi, R., & Hanrahan, P. (2004). Triple product wavelet integrals for all-frequency relighting. ACM Transactions on Graphics (TOG), 23(3), 477–487.CrossRef
20.
go back to reference Sloan, P. P. (2008). Stupid spherical harmonics (sh) tricks. In Game developers conference (Vol. 9). Sloan, P. P. (2008). Stupid spherical harmonics (sh) tricks. In Game developers conference (Vol. 9).
21.
go back to reference Behrendt, S., Colditz, C., Franzke, O., Kopf, J., & Deussen, O. (2005). Realistic real-time rendering of landscapes using billboard clouds. In Computer graphics forum (Vol. 24, No. 3, pp. 507–516). Blackwell Publishing, Inc. Behrendt, S., Colditz, C., Franzke, O., Kopf, J., & Deussen, O. (2005). Realistic real-time rendering of landscapes using billboard clouds. In Computer graphics forum (Vol. 24, No. 3, pp. 507–516). Blackwell Publishing, Inc.
22.
go back to reference Cabral, M., Bonneel, N., Lefebvre, S., & Drettakis, G. (2011). Relighting photographs of tree canopies. IEEE Transactions on Visualization and Computer Graphics, 17(10), 1459–1474.CrossRef Cabral, M., Bonneel, N., Lefebvre, S., & Drettakis, G. (2011). Relighting photographs of tree canopies. IEEE Transactions on Visualization and Computer Graphics, 17(10), 1459–1474.CrossRef
23.
go back to reference Favorskaya, M. N., & Jain, L. C. (2017). Lighting and shadows rendering in natural scenes. In Handbook on advances in remote sensing and geographic information systems. Intelligent systems reference library (Vol. 122, pp. 367–396). Cham: Springer. Favorskaya, M. N., & Jain, L. C. (2017). Lighting and shadows rendering in natural scenes. In Handbook on advances in remote sensing and geographic information systems. Intelligent systems reference library (Vol. 122, pp. 367–396). Cham: Springer.
24.
go back to reference Babahenini, D., Gruson, A., Babahenini, M. C., & Bouatouch, K. (2017). Efficient inverse transform methods for VPL selection in global illumination. Multimedia Tools and Applications, 77, 1–25. Babahenini, D., Gruson, A., Babahenini, M. C., & Bouatouch, K. (2017). Efficient inverse transform methods for VPL selection in global illumination. Multimedia Tools and Applications, 77, 1–25.
25.
go back to reference Duvenaud, D. (2014). Automatic model construction with Gaussian processes. Doctoral dissertation, University of Cambridge. Duvenaud, D. (2014). Automatic model construction with Gaussian processes. Doctoral dissertation, University of Cambridge.
26.
go back to reference Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.CrossRef Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30(1), 79–82.CrossRef
27.
go back to reference Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRef Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRef
28.
go back to reference Pujades, S., & Devernay, F. (2014). Interpolation de points de vue: Approches directe et variationnelle. In Reconnaissance de Formes et Intelligence Artificielle (RFIA) Pujades, S., & Devernay, F. (2014). Interpolation de points de vue: Approches directe et variationnelle. In Reconnaissance de Formes et Intelligence Artificielle (RFIA)
Metadata
Title
Gaussian Radial Basis Function for Efficient Computation of Forest Indirect Illumination
Authors
Fayçal Abbas
Mohamed Chaouki Babahenini
Publication date
01-06-2018
Publisher
3D Display Research Center
Published in
3D Research / Issue 2/2018
Electronic ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-018-0171-1

Other articles of this Issue 2/2018

3D Research 2/2018 Go to the issue

Premium Partner