Skip to main content
Top
Published in: Production Engineering 1-2/2014

01-03-2014 | Machine Tool

Improving grinding fluid delivery using pneumatic barrier and compound nozzle

Authors: Bijoy Mandal, Gobinda Chandra Das, Santanu Das, Simul Banerjee

Published in: Production Engineering | Issue 1-2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Grinding fluid is commonly applied to control grinding defects caused by high grinding zone temperature. Delivery of fluid to the grinding zone is obstructed by the formation of a stiff air layer around the grinding wheel. This results in huge wastage of grinding fluid. In the present paper, results of using a pneumatic barrier and a compound nozzle are discussed with respect to delivering fluid deep into the grinding zone. Grinding fluid passing through the grinding wheel contact zone is measured under different modes of fluid delivery using a flood cooling, or a compound, nozzle, with or without the application of a pneumatic barrier. It is found that the system using a pneumatic barrier with flood cooling nozzle, and that employing a compound nozzle perform better than the flood cooling nozzle. A compound nozzle along with a pneumatic barrier renders substantially less wastage of grinding fluid even at a low flow rate of grinding fluid. Above a fluid discharge of 475 ml/min, the compound nozzle alone shows effective penetration of grinding fluid through the grinding zone. Reduction of grinding force, specific energy and roughness of ground surface are obtained after using compound nozzle fluid delivery system. Compound nozzle may be used instead of flood cooling nozzle as it improves grinding performance even using 52.5 % less discharge of grinding fluid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Harwood Publication, UK Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Harwood Publication, UK
2.
go back to reference Rowe WB (2009) Principles of modern grinding technology, 1st edn. Elsevier, UK Rowe WB (2009) Principles of modern grinding technology, 1st edn. Elsevier, UK
3.
go back to reference Shibata J, Goto T, Yamamoto M (1982) Characteristics of air flow around a grinding wheel and their availability for assessing the wheel wear. Ann CIRP 31(1):233–238CrossRef Shibata J, Goto T, Yamamoto M (1982) Characteristics of air flow around a grinding wheel and their availability for assessing the wheel wear. Ann CIRP 31(1):233–238CrossRef
4.
go back to reference Davies TP, Jackson RG (1981) Air flow around grinding wheels. Precis Eng 3(2):225–228CrossRef Davies TP, Jackson RG (1981) Air flow around grinding wheels. Precis Eng 3(2):225–228CrossRef
5.
go back to reference Ebbrell S, Woolley NH, Tridimas YD, Allanson DR, Rowe WB (2000) The effect of cutting fluid application methods on the grinding process. Int J Mach Tools Manuf 40:209–223CrossRef Ebbrell S, Woolley NH, Tridimas YD, Allanson DR, Rowe WB (2000) The effect of cutting fluid application methods on the grinding process. Int J Mach Tools Manuf 40:209–223CrossRef
6.
go back to reference Brinksmeier E, Heinzel C, Wittmann M (1999) Friction, cooling and lubrication in grinding. Ann CIRP 48(2):581–598CrossRef Brinksmeier E, Heinzel C, Wittmann M (1999) Friction, cooling and lubrication in grinding. Ann CIRP 48(2):581–598CrossRef
7.
go back to reference Wu H, Lin B, Cai R, Morgan MN (2007) Measurement of the air boundary layer on the periphery of a rotating grinding wheel using LDA. J Phys: Conf Ser 76(012059):1–6 Wu H, Lin B, Cai R, Morgan MN (2007) Measurement of the air boundary layer on the periphery of a rotating grinding wheel using LDA. J Phys: Conf Ser 76(012059):1–6
8.
go back to reference Mandal B, Singh R, Das S, Banerjee S (2010) Study of the behavior of air flow around a grinding wheel under the application of pneumatic barrier. In: Proceedings of the 36th international MATADOR conference, Manchester, UK, pp 113–116 Mandal B, Singh R, Das S, Banerjee S (2010) Study of the behavior of air flow around a grinding wheel under the application of pneumatic barrier. In: Proceedings of the 36th international MATADOR conference, Manchester, UK, pp 113–116
9.
go back to reference Mandal B, Majumder S, Das S, Banerjee S (2010) Predictive modeling and investigation on the formation of stiff air-layer around the grinding wheel. Adv Mater Res 83–86:654–659 Mandal B, Majumder S, Das S, Banerjee S (2010) Predictive modeling and investigation on the formation of stiff air-layer around the grinding wheel. Adv Mater Res 83–86:654–659
10.
go back to reference Mandal B, Majumder S, Das S, Banerjee S (2011) Formation of a significantly less stiff air-layer around a grinding wheel pasted with rexine leather. Int J Precis Technol 2(1):12–20CrossRef Mandal B, Majumder S, Das S, Banerjee S (2011) Formation of a significantly less stiff air-layer around a grinding wheel pasted with rexine leather. Int J Precis Technol 2(1):12–20CrossRef
11.
go back to reference Engineer F, Guo C, Malkin S (1992) Experimental measurement of fluid flow through the grinding zone. Trans ASME J Eng Ind 114:61–66CrossRef Engineer F, Guo C, Malkin S (1992) Experimental measurement of fluid flow through the grinding zone. Trans ASME J Eng Ind 114:61–66CrossRef
12.
go back to reference Sarmacharya RS, George MN, Das S (1998) On the grinding wheel performance through minor wheel modification. In: Proceedings of the 18th AIMTDR conference, Kharagpur, India, pp 156–161 Sarmacharya RS, George MN, Das S (1998) On the grinding wheel performance through minor wheel modification. In: Proceedings of the 18th AIMTDR conference, Kharagpur, India, pp 156–161
13.
go back to reference Das S, Sharma AO, Singh SS, Nahate SV (2000) Grinding performance through effective application of grinding fluid. Proceedings of the international conference on manufacturing, Dhaka, Bangladesh, pp 231–239 Das S, Sharma AO, Singh SS, Nahate SV (2000) Grinding performance through effective application of grinding fluid. Proceedings of the international conference on manufacturing, Dhaka, Bangladesh, pp 231–239
14.
go back to reference Irani RA, Bauer RJ, Warkentin A (2005) A review of cutting fluid application in the grinding process. Int J Mach Tools Manuf 45:1696–1705CrossRef Irani RA, Bauer RJ, Warkentin A (2005) A review of cutting fluid application in the grinding process. Int J Mach Tools Manuf 45:1696–1705CrossRef
15.
go back to reference Webster JA (2007) Improving surface integrity and economics of grinding by optimum coolant application, with consideration of abrasive tool and process regime. Proc IMechE Part B: J Eng Manuf 221:1665–1675CrossRef Webster JA (2007) Improving surface integrity and economics of grinding by optimum coolant application, with consideration of abrasive tool and process regime. Proc IMechE Part B: J Eng Manuf 221:1665–1675CrossRef
16.
go back to reference Mandal B, Biswas D, Sarkar A, Das S, Banerjee S (2013) Improving grindability of Inconel 600 using alumina wheel through pneumatic barrier assisted fluid application. Adv Mater Res 622–623:394–398 Mandal B, Biswas D, Sarkar A, Das S, Banerjee S (2013) Improving grindability of Inconel 600 using alumina wheel through pneumatic barrier assisted fluid application. Adv Mater Res 622–623:394–398
17.
go back to reference Mandal B, Biswas D, Sarkar A, Das S, Banerjee S (2013) Grinding performance using a compound nozzle characterised by small discharge of fluid. J Assoc Eng India 83(1):28–35 Mandal B, Biswas D, Sarkar A, Das S, Banerjee S (2013) Grinding performance using a compound nozzle characterised by small discharge of fluid. J Assoc Eng India 83(1):28–35
18.
go back to reference Banerjee S, Ghosal S, Dutta T (2008) Development of simple technique for improving the efficacy of fluid flow through the grinding zone. J Mater Process Technol 197(1–3):306–313CrossRef Banerjee S, Ghosal S, Dutta T (2008) Development of simple technique for improving the efficacy of fluid flow through the grinding zone. J Mater Process Technol 197(1–3):306–313CrossRef
19.
go back to reference Morgan MN, Jackson AR, Wu H, Baines-Jones V, Batako A, Rowe WB (2008) Optimisation of fluid application in grinding. CIRP Ann-Manuf Technol 57:363–366CrossRef Morgan MN, Jackson AR, Wu H, Baines-Jones V, Batako A, Rowe WB (2008) Optimisation of fluid application in grinding. CIRP Ann-Manuf Technol 57:363–366CrossRef
20.
go back to reference Aurich JC, Kirsch B, Herzenstiel P, Kugel P (2011) Hydraulic design of a grinding wheel with an internal cooling lubricant supply. Prod Eng Res Dev 5(2):119–126CrossRef Aurich JC, Kirsch B, Herzenstiel P, Kugel P (2011) Hydraulic design of a grinding wheel with an internal cooling lubricant supply. Prod Eng Res Dev 5(2):119–126CrossRef
21.
go back to reference Mandal B, Singh R, Das S, Banerjee S (2011) Improving grinding performance by controlling air flow around a grinding wheel. Int J Mach Tools Manuf 51:670–676CrossRef Mandal B, Singh R, Das S, Banerjee S (2011) Improving grinding performance by controlling air flow around a grinding wheel. Int J Mach Tools Manuf 51:670–676CrossRef
22.
go back to reference Mandal B, Singh R, Das S, Banerjee S (2012) Development of a grinding fluid delivery technique and its performance evaluation. Mater Manuf Process 27(4):436–442CrossRef Mandal B, Singh R, Das S, Banerjee S (2012) Development of a grinding fluid delivery technique and its performance evaluation. Mater Manuf Process 27(4):436–442CrossRef
23.
go back to reference Mandal B, Das GC, Das S, Banerjee S (2010) Development of a grinding fluid delivery technique. In: Proceedings of the 3rd international and 24th AIMTDR conference, Visakhapatnam, India, pp 897–901 Mandal B, Das GC, Das S, Banerjee S (2010) Development of a grinding fluid delivery technique. In: Proceedings of the 3rd international and 24th AIMTDR conference, Visakhapatnam, India, pp 897–901
24.
go back to reference Hadad MJ, Tawakoli T, Sadeghi MH, Sadeghi B (2012) Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 54–55:10–17CrossRef Hadad MJ, Tawakoli T, Sadeghi MH, Sadeghi B (2012) Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int J Mach Tools Manuf 54–55:10–17CrossRef
25.
go back to reference Li KM, Lin CP (2012) Study on minimum quantity lubrication in micro-grinding. Int J Adv Manuf Technol 62(1–4):99–105CrossRef Li KM, Lin CP (2012) Study on minimum quantity lubrication in micro-grinding. Int J Adv Manuf Technol 62(1–4):99–105CrossRef
26.
go back to reference Mao C, Tang X, Zou H, Zhou ZX, Yin W (2012) Experimental investigation of surface quality for minimum quantity oil–water lubrication grinding. Int J Adv Manuf Technol 59(1–4):93–100CrossRef Mao C, Tang X, Zou H, Zhou ZX, Yin W (2012) Experimental investigation of surface quality for minimum quantity oil–water lubrication grinding. Int J Adv Manuf Technol 59(1–4):93–100CrossRef
27.
go back to reference Morgan MN, Barczak L, Batako A (2012) Temperatures in fine grinding with minimum quantity lubrication (MQL). Int J Adv Manuf Technol 60(9–12):951–958CrossRef Morgan MN, Barczak L, Batako A (2012) Temperatures in fine grinding with minimum quantity lubrication (MQL). Int J Adv Manuf Technol 60(9–12):951–958CrossRef
Metadata
Title
Improving grinding fluid delivery using pneumatic barrier and compound nozzle
Authors
Bijoy Mandal
Gobinda Chandra Das
Santanu Das
Simul Banerjee
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Production Engineering / Issue 1-2/2014
Print ISSN: 0944-6524
Electronic ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-013-0507-x

Other articles of this Issue 1-2/2014

Production Engineering 1-2/2014 Go to the issue

Premium Partners