Skip to main content
Top
Published in: 3D Research 2/2018

01-06-2018 | 3DR Express

Optical Double Image Hiding in the Fractional Hartley Transform Using Structured Phase Filter and Arnold Transform

Authors: Poonam Lata Yadav, Hukum Singh

Published in: 3D Research | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To maintain the security of the image encryption and to protect the image from intruders, a new asymmetric cryptosystem based on fractional Hartley Transform (FrHT) and the Arnold transform (AT) is proposed. AT is a method of image cropping and edging in which pixels of the image are reorganized. In this cryptosystem we have used AT so as to extent the information content of the two original images onto the encrypted images so as to increase the safety of the encoded images. We have even used Structured Phase Mask (SPM) and Hybrid Mask (HM) as the encryption keys. The original image is first multiplied with the SPM and HM and then transformed with direct and inverse fractional Hartley transform so as to obtain the encrypted image. The fractional orders of the FrHT and the parameters of the AT correspond to the keys of encryption and decryption methods. If both the keys are correctly used only then the original image would be retrieved. Recommended method helps in strengthening the safety of DRPE by growing the key space and the number of parameters and the method is robust against various attacks. By using MATLAB 8.3.0.52 (R2014a) we calculate the strength of the recommended cryptosystem. A set of simulated results shows the power of the proposed asymmetric cryptosystem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of IEEE, 97, 1128–1148.CrossRef Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of IEEE, 97, 1128–1148.CrossRef
2.
go back to reference Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1, 536–589.CrossRef Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1, 536–589.CrossRef
3.
go back to reference Chen, W., Javidi, B., & Chen, X. (2014). Advances in Optical security system. Advances in Optics and Photonics, 6, 120–155.CrossRef Chen, W., Javidi, B., & Chen, X. (2014). Advances in Optical security system. Advances in Optics and Photonics, 6, 120–155.CrossRef
4.
go back to reference Javidi, B., et al. (2016). Roadmap on optical security. Journals of Optics, 18, 1–39. Javidi, B., et al. (2016). Roadmap on optical security. Journals of Optics, 18, 1–39.
5.
go back to reference Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20, 767–769.CrossRef Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20, 767–769.CrossRef
6.
go back to reference Kumar, P., Joseph, J., & Singh, K. (2016). Double random phase encoding based optical encryption systems using some linear canonical transforms: Weaknesses and countermeasures. Springer Series in Optical Sciences, 198, 367–396.MathSciNetCrossRefMATH Kumar, P., Joseph, J., & Singh, K. (2016). Double random phase encoding based optical encryption systems using some linear canonical transforms: Weaknesses and countermeasures. Springer Series in Optical Sciences, 198, 367–396.MathSciNetCrossRefMATH
7.
go back to reference Unnikrishnan, G., & Singh, K. (2000). Double random fractional Fourier domain encoding for optical security. Optical Engineering, 39(11), 2853–2859.CrossRef Unnikrishnan, G., & Singh, K. (2000). Double random fractional Fourier domain encoding for optical security. Optical Engineering, 39(11), 2853–2859.CrossRef
8.
go back to reference Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double random phase encoding in the fractional Fourier domain. Optics Letters, 25, 887–889.CrossRef Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double random phase encoding in the fractional Fourier domain. Optics Letters, 25, 887–889.CrossRef
9.
go back to reference Nishchal, N. K., Joseph, J., & Singh, K. (2003). Fully phase encryption using Fractional Fourier transform. Optical Engineering, 42(6), 1583–1588.CrossRef Nishchal, N. K., Joseph, J., & Singh, K. (2003). Fully phase encryption using Fractional Fourier transform. Optical Engineering, 42(6), 1583–1588.CrossRef
10.
go back to reference Hennelly, B. M., & Sheridan, J. T. (2003). Image encryption and fractional Fourier transform. Optik, 114, 251–265.CrossRef Hennelly, B. M., & Sheridan, J. T. (2003). Image encryption and fractional Fourier transform. Optik, 114, 251–265.CrossRef
11.
go back to reference Tao, R., Xin, Y., & Wang, Y. (2007). Double image encryption based on random phase encoding in the fractional Fourier domain. Optics Express, 15–24, 16067–16079.CrossRef Tao, R., Xin, Y., & Wang, Y. (2007). Double image encryption based on random phase encoding in the fractional Fourier domain. Optics Express, 15–24, 16067–16079.CrossRef
12.
go back to reference Sinha, A., & Singh, N. (2008). Optical image encryption using fractional Fourier transform and chaos. Optics and Lasers in Engineering, 46(2), 117–123.CrossRef Sinha, A., & Singh, N. (2008). Optical image encryption using fractional Fourier transform and chaos. Optics and Lasers in Engineering, 46(2), 117–123.CrossRef
13.
go back to reference Rajput, S. K., & Nischal, N. K. (2012). Image encryption based on interference that uses fractional Fourier domain asymmetric keys. Applied Optics, 51(10), 1446–1452.CrossRef Rajput, S. K., & Nischal, N. K. (2012). Image encryption based on interference that uses fractional Fourier domain asymmetric keys. Applied Optics, 51(10), 1446–1452.CrossRef
14.
go back to reference Dahiya, M., Sukhija, S., Singh, H. (2014). Image encryption using Quad phase masks in fractional Fourier domain and Case study. In: IEEE, 2014, 978-1-4799-2572-8. Dahiya, M., Sukhija, S., Singh, H. (2014). Image encryption using Quad phase masks in fractional Fourier domain and Case study. In: IEEE, 2014, 978-1-4799-2572-8.
15.
go back to reference Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(210), 1–24. Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(210), 1–24.
16.
go back to reference Matoba, O., & Javidi, B. (1999). Encrypted optical memory system using three dimensional keys in the Fresnel domain. Optics Letters, 24, 762–764.CrossRef Matoba, O., & Javidi, B. (1999). Encrypted optical memory system using three dimensional keys in the Fresnel domain. Optics Letters, 24, 762–764.CrossRef
17.
go back to reference Hennelly, B. M., & Sheridan, J. T. (2004). Random phase and jigsaw encryption in the Fresnel domain. Optical Engineering, 10(1117/1), 1790502. Hennelly, B. M., & Sheridan, J. T. (2004). Random phase and jigsaw encryption in the Fresnel domain. Optical Engineering, 10(1117/1), 1790502.
18.
go back to reference Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29, 1584–1586.CrossRef Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29, 1584–1586.CrossRef
19.
go back to reference Rajput, S. K., & Nischal, N. K. (2014). Fresnel domain nonlinear optical encryption scheme based on Gerchberg-Saxton phase retreival algorithm. Applied Optics, 53, 418–425.CrossRef Rajput, S. K., & Nischal, N. K. (2014). Fresnel domain nonlinear optical encryption scheme based on Gerchberg-Saxton phase retreival algorithm. Applied Optics, 53, 418–425.CrossRef
21.
go back to reference Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007). Gyrator Transform: properties and applications. Optics Express, 15, 2190–2203.CrossRef Rodrigo, J. A., Alieva, T., & Calvo, M. L. (2007). Gyrator Transform: properties and applications. Optics Express, 15, 2190–2203.CrossRef
22.
go back to reference Singh, N., & Sinha, A. (2009). Gyrator Transform- based optical image encryption, using chaos. Optics and Lasers in Engineering, 47(5), 539–546.CrossRef Singh, N., & Sinha, A. (2009). Gyrator Transform- based optical image encryption, using chaos. Optics and Lasers in Engineering, 47(5), 539–546.CrossRef
23.
go back to reference Liu, Z., Xu, L., Lin, C., Dai, J., & Liu, S. (2011). Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Optics and Lasers in Engineering, 49(4), 542–546.CrossRef Liu, Z., Xu, L., Lin, C., Dai, J., & Liu, S. (2011). Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Optics and Lasers in Engineering, 49(4), 542–546.CrossRef
24.
go back to reference Abuturab, M. R. (2012). Color image security system using double random structured phase encoding in gyrator transform domain. Applied Optics, 51, 3006–3016.CrossRef Abuturab, M. R. (2012). Color image security system using double random structured phase encoding in gyrator transform domain. Applied Optics, 51, 3006–3016.CrossRef
25.
go back to reference Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully-phase image encryption using double random—structured phase masks in gyrator domain. Applied Optics, 53, 6472–6481.CrossRef Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully-phase image encryption using double random—structured phase masks in gyrator domain. Applied Optics, 53, 6472–6481.CrossRef
26.
go back to reference Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Double phase- image encryption using gyrator transforms, and structured phase mask in the frequency plane. Optics and Lasers in Engineering, 67, 145–156.CrossRef Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2015). Double phase- image encryption using gyrator transforms, and structured phase mask in the frequency plane. Optics and Lasers in Engineering, 67, 145–156.CrossRef
27.
28.
go back to reference Zhou, N. R., Wang, Y., & Gong, L. (2011). Novel optical image encryption scheme based on fractional Mellin transform. Optics Communication, 284, 3234–3242.CrossRef Zhou, N. R., Wang, Y., & Gong, L. (2011). Novel optical image encryption scheme based on fractional Mellin transform. Optics Communication, 284, 3234–3242.CrossRef
29.
go back to reference Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. International Journal of Optics, 728056, 1–9.CrossRef Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Devil’s vortex phase structure as frequency plane mask for image encryption using the fractional Mellin transform. International Journal of Optics, 728056, 1–9.CrossRef
30.
go back to reference Wu, J., Zhang, L., & Zhou, N. (2010). Image encryption based on the multiple order discrete fractional cosine transform. Optics Communication, 283(9), 1720–1725.CrossRef Wu, J., Zhang, L., & Zhou, N. (2010). Image encryption based on the multiple order discrete fractional cosine transform. Optics Communication, 283(9), 1720–1725.CrossRef
31.
go back to reference Hartley, R. V. L. (1942). A more symmerical Fourier analysis applied to transmission problems. Proceedings of IRE, 30(3), 144–150.CrossRefMATH Hartley, R. V. L. (1942). A more symmerical Fourier analysis applied to transmission problems. Proceedings of IRE, 30(3), 144–150.CrossRefMATH
32.
go back to reference Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31, 3438–3440.CrossRef Chen, L., & Zhao, D. (2006). Optical image encryption with Hartley transforms. Optics Letters, 31, 3438–3440.CrossRef
33.
go back to reference Singh, N., & Sinha, A. (2009). Optical image encryption using Hartley transform and logistic map. Optics Communication, 282, 1104–1109.CrossRef Singh, N., & Sinha, A. (2009). Optical image encryption using Hartley transform and logistic map. Optics Communication, 282, 1104–1109.CrossRef
34.
go back to reference Singh, N., & Sinha, A. (2010). Optical image encryption using improper Hartley transforms and chaos. Optik, 121, 918–925.CrossRef Singh, N., & Sinha, A. (2010). Optical image encryption using improper Hartley transforms and chaos. Optik, 121, 918–925.CrossRef
35.
go back to reference Zhao, D., Li, X., & Chen, L. (2008). Optical image encryption with redefined fractional Hartley transform. Optics Communication, 281, 5326–5329.CrossRef Zhao, D., Li, X., & Chen, L. (2008). Optical image encryption with redefined fractional Hartley transform. Optics Communication, 281, 5326–5329.CrossRef
36.
go back to reference Jimenez, C., Torres, C., & Mattos, L. (2011). Fractional Hartley transform applied to optical image encryption. Journal of Physics, 274, 012041. Jimenez, C., Torres, C., & Mattos, L. (2011). Fractional Hartley transform applied to optical image encryption. Journal of Physics, 274, 012041.
41.
go back to reference Abutturab, M. R. (2013). Color information security system using Arnold transform and double structured phase encoding in gyrator transform domain. Optics & Laser Technology, 45, 524–532.CrossRef Abutturab, M. R. (2013). Color information security system using Arnold transform and double structured phase encoding in gyrator transform domain. Optics & Laser Technology, 45, 524–532.CrossRef
43.
go back to reference Zhou, N., Dong, T., & Wu, J. (2010). Novel image encryption algorithm based on multiple—parameter discrete fractional random transform. Optics Communication, 283(15), 3037–3042.CrossRef Zhou, N., Dong, T., & Wu, J. (2010). Novel image encryption algorithm based on multiple—parameter discrete fractional random transform. Optics Communication, 283(15), 3037–3042.CrossRef
44.
go back to reference Singh, H. (2016). Optical cryptosystems of color images using random phase masks in fractional wavelet transform domain. In: AIP conference proceedings, Vol. 1728, 2016, pp. 020063-1/4. Singh, H. (2016). Optical cryptosystems of color images using random phase masks in fractional wavelet transform domain. In: AIP conference proceedings, Vol. 1728, 2016, pp. 020063-1/4.
45.
go back to reference Carnicer, A., Montes- Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen-ciphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30, 1644–1646.CrossRef Carnicer, A., Montes- Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen-ciphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30, 1644–1646.CrossRef
46.
go back to reference Frauel, Y., Castro, A., Naughton, T. J., & Javidi, B. (2007). Resistance of the double random phase encryption against various attacks. Optics Express, 15(16), 10253–10265.CrossRef Frauel, Y., Castro, A., Naughton, T. J., & Javidi, B. (2007). Resistance of the double random phase encryption against various attacks. Optics Express, 15(16), 10253–10265.CrossRef
47.
go back to reference Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31, 1044–1046.CrossRef Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31, 1044–1046.CrossRef
48.
go back to reference Rajput, S. K., & Nishchal, N. K. (2013). Known plaintext attack on encryption domain independent optical Asymmetric cryptosystem. Optics Communication, 309, 231–235.CrossRef Rajput, S. K., & Nishchal, N. K. (2013). Known plaintext attack on encryption domain independent optical Asymmetric cryptosystem. Optics Communication, 309, 231–235.CrossRef
49.
go back to reference Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase truncated Fourier transforms. Optics Letters, 35, 118–120.CrossRef Qin, W., & Peng, X. (2010). Asymmetric cryptosystem based on phase truncated Fourier transforms. Optics Letters, 35, 118–120.CrossRef
50.
go back to reference Wang, X., & Zhao, D. (2011). Security enhancement of a phase truncation based image encryption algorithm. Applied Optics, 50, 6645–6651.CrossRef Wang, X., & Zhao, D. (2011). Security enhancement of a phase truncation based image encryption algorithm. Applied Optics, 50, 6645–6651.CrossRef
51.
go back to reference Wang, X., & Zhao, D. (2012). Double images encrypted method with resistance against the specific attack based on an asymmetric algoirthm. Optics Express, 20, 11994–12003.CrossRef Wang, X., & Zhao, D. (2012). Double images encrypted method with resistance against the specific attack based on an asymmetric algoirthm. Optics Express, 20, 11994–12003.CrossRef
52.
go back to reference Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase truncated Fourier transform. Optics Communication, 285(6), 1078–1081.CrossRef Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase truncated Fourier transform. Optics Communication, 285(6), 1078–1081.CrossRef
53.
go back to reference Wang, Q., Guo, Q., & Zhaou, J. (2013). Color image hiding based on phase truncation and phase retrieval technique in fractional fourier domain. Optik, 124, 1224–1229.CrossRef Wang, Q., Guo, Q., & Zhaou, J. (2013). Color image hiding based on phase truncation and phase retrieval technique in fractional fourier domain. Optik, 124, 1224–1229.CrossRef
54.
go back to reference Wang, X., Chen, Y., Dai, C., & Zhao, D. (2014). Discussion and a new attack of the asymmetric cryptosystem based on phase truncated Fourier transform. Applied Optics, 53(2), 208–213.CrossRef Wang, X., Chen, Y., Dai, C., & Zhao, D. (2014). Discussion and a new attack of the asymmetric cryptosystem based on phase truncated Fourier transform. Applied Optics, 53(2), 208–213.CrossRef
55.
go back to reference Mehra, I., & Nischal, N. K. (2014). Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Optics Express, 22, 5474–5482.CrossRef Mehra, I., & Nischal, N. K. (2014). Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Optics Express, 22, 5474–5482.CrossRef
57.
go back to reference Sinha, A. (2016). Non linear optical cryptosystem resistant to standard and hybrid attacks. Optics and Lasers in Engineering, 81, 79–86.CrossRef Sinha, A. (2016). Non linear optical cryptosystem resistant to standard and hybrid attacks. Optics and Lasers in Engineering, 81, 79–86.CrossRef
58.
go back to reference Khurana, M., Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8:28, 1–17. Khurana, M., Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8:28, 1–17.
59.
go back to reference Liu, H., Lin, D., & Kadir, A. (2013). A novel data hiding method based on deoxyribonucleic acid coding. Computers & Electrical Engineering, 39, 1164–1173.CrossRef Liu, H., Lin, D., & Kadir, A. (2013). A novel data hiding method based on deoxyribonucleic acid coding. Computers & Electrical Engineering, 39, 1164–1173.CrossRef
60.
go back to reference Rajput, S. K., & Nishchal, N. (2012). Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Applied Optics, 51, 5377–5786.CrossRef Rajput, S. K., & Nishchal, N. (2012). Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Applied Optics, 51, 5377–5786.CrossRef
61.
go back to reference Singh, H. (2016). Cryptosystem for securing image encryption using structured phase masks in Fresnel Wavelet transform domain. 3D Res 7-34:1-18 Singh, H. (2016). Cryptosystem for securing image encryption using structured phase masks in Fresnel Wavelet transform domain. 3D Res 7-34:1-18
62.
go back to reference Kumar, R., & Bhaduri, B. (2017). Optical image encryption using Kronecker product and hybrid phase masks. Opitcs and Laser Technology, 95, 51–55.CrossRef Kumar, R., & Bhaduri, B. (2017). Optical image encryption using Kronecker product and hybrid phase masks. Opitcs and Laser Technology, 95, 51–55.CrossRef
63.
go back to reference Barrera, J. F., Henao, R., & Torroba, R. (2005). Fault tolerances using toroidal zone plate encryption. Optics Communications, 256, 489–494.CrossRef Barrera, J. F., Henao, R., & Torroba, R. (2005). Fault tolerances using toroidal zone plate encryption. Optics Communications, 256, 489–494.CrossRef
64.
go back to reference Davis, J. A., McNamara, D. E., & Cottrell, D. M. (2000). Image Processing with the radial Hilbert transform:theory and experiments. Optics Letters, 25, 0146–9592.CrossRef Davis, J. A., McNamara, D. E., & Cottrell, D. M. (2000). Image Processing with the radial Hilbert transform:theory and experiments. Optics Letters, 25, 0146–9592.CrossRef
65.
go back to reference Joshi, M., Shakher, C., & Singh, K. (2010). Image encryption using radial Hilbert transform filter bank as an additional key in the modified double random fractional Fourier encoding architecture. Optics and Lasers in Engineering, 48, 605–615.CrossRef Joshi, M., Shakher, C., & Singh, K. (2010). Image encryption using radial Hilbert transform filter bank as an additional key in the modified double random fractional Fourier encoding architecture. Optics and Lasers in Engineering, 48, 605–615.CrossRef
66.
go back to reference Joshi, M., Shakher, C., & Singh, K. (2010). Fractional fourier plane image encryption technique using radial Hilbert and Jigsaw transform. Optics and Lasers in Engineering, 48, 754–759.CrossRef Joshi, M., Shakher, C., & Singh, K. (2010). Fractional fourier plane image encryption technique using radial Hilbert and Jigsaw transform. Optics and Lasers in Engineering, 48, 754–759.CrossRef
Metadata
Title
Optical Double Image Hiding in the Fractional Hartley Transform Using Structured Phase Filter and Arnold Transform
Authors
Poonam Lata Yadav
Hukum Singh
Publication date
01-06-2018
Publisher
3D Display Research Center
Published in
3D Research / Issue 2/2018
Electronic ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-018-0172-0

Other articles of this Issue 2/2018

3D Research 2/2018 Go to the issue

Premium Partner