Skip to main content
Top

15-04-2024 | Review Article

Physics-Informed Machine Learning for metal additive manufacturing

Authors: Abdelrahman Farrag, Yuxin Yang, Nieqing Cao, Daehan Won, Yu Jin

Published in: Progress in Additive Manufacturing

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advancement of additive manufacturing (AM) technologies has facilitated the design and fabrication of innovative and complicated structures or parts that cannot be fabricated with traditional subtractive manufacturing processes. To achieve the desired functional performance of a specific part, quality and process should be well monitored, controlled, and optimized with advanced modeling techniques. Despite the effectiveness of existing physics-based and data-driven methods, they have limitations in providing generalizability, interpretability, and accuracy for complex metal AM process optimization and prediction solutions. This work emphasizes Physics-Informed Machine Learning (PIML) as a significant recent development, embedding physics knowledge (e.g., thermomechanical laws and constraints) into Machine Learning (ML) models to ensure their reliability and interpretability, as well as enhancing model predictive accuracy and efficiency while addressing the limitations of traditional approaches. The paper further classifies PIML into three categories, emphasizing physics integration in terms of Physics-Informed Domain Knowledge, Simulation-Based Input Data, and Physics-Guided Model Training. In this context, the Physics-Informed Neural Network (PINN) serves as a notable example of Physics-Guided Model Training. PINN is particularly noteworthy for its ability to yield more explainable and reliable results in forward problem solving, even with noisy training data. In addition, the paper further discusses the limitations and potential solutions of PINN.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blakey-Milner B, Gradl P, Snedden G et al (2021) Metal additive manufacturing in aerospace: a review. Mater Des 209:110008CrossRef Blakey-Milner B, Gradl P, Snedden G et al (2021) Metal additive manufacturing in aerospace: a review. Mater Des 209:110008CrossRef
69.
go back to reference Mehne SHH, Mirjalili S (2020) Moth-flame optimization algorithm: theory, literature review, and application in optimal nonlinear feedback control design. In: Nature-inspired optimizers: theories, literature reviews and applications, pp 143–166 Mehne SHH, Mirjalili S (2020) Moth-flame optimization algorithm: theory, literature review, and application in optimal nonlinear feedback control design. In: Nature-inspired optimizers: theories, literature reviews and applications, pp 143–166
86.
go back to reference Kovachki N, Li Z, Liu B et al (2023) Neural operator: learning maps between function spaces with applications to PDEs. J Mach Learn Res 24(89):1–97MathSciNet Kovachki N, Li Z, Liu B et al (2023) Neural operator: learning maps between function spaces with applications to PDEs. J Mach Learn Res 24(89):1–97MathSciNet
89.
go back to reference Cho J, Nam S, Yang H, et al (2022) Separable PINN: Mitigating the curse of dimensionality in physics-informed neural networks. arXiv preprint arXiv:2211.08761 Cho J, Nam S, Yang H, et al (2022) Separable PINN: Mitigating the curse of dimensionality in physics-informed neural networks. arXiv preprint arXiv:​2211.​08761
90.
go back to reference Hu Z, Jagtap AD, Karniadakis GE et al (2021) When do extended physics-informed neural networks (XPINNs) improve generalization? arXiv preprint arXiv:2109.09444 Hu Z, Jagtap AD, Karniadakis GE et al (2021) When do extended physics-informed neural networks (XPINNs) improve generalization? arXiv preprint arXiv:​2109.​09444
92.
go back to reference Thanasutives P, Numao M, Fukui K (2021) Adversarial multi-task learning enhanced physics-informed neural networks for solving partial differential equations. In: 2021 International joint conference on neural networks (IJCNN). IEEE, pp 1–9, https://doi.org/10.1093/imanum/drab032 Thanasutives P, Numao M, Fukui K (2021) Adversarial multi-task learning enhanced physics-informed neural networks for solving partial differential equations. In: 2021 International joint conference on neural networks (IJCNN). IEEE, pp 1–9, https://​doi.​org/​10.​1093/​imanum/​drab032
103.
go back to reference Stachenfeld K, Fielding DB, Kochkov D et al (2021) Learned simulators for turbulence. In: International conference on learning representations Stachenfeld K, Fielding DB, Kochkov D et al (2021) Learned simulators for turbulence. In: International conference on learning representations
105.
go back to reference Pang G, Karniadakis GE (2020) Physics-informed learning machines for partial differential equations: Gaussian processes versus neural networks. In: Kevrekidis P, Cuevas-Maraver J, Saxena A (eds) Emerging frontiers in nonlinear science. Springer, Cham, pp 323–343CrossRef Pang G, Karniadakis GE (2020) Physics-informed learning machines for partial differential equations: Gaussian processes versus neural networks. In: Kevrekidis P, Cuevas-Maraver J, Saxena A (eds) Emerging frontiers in nonlinear science. Springer, Cham, pp 323–343CrossRef
Metadata
Title
Physics-Informed Machine Learning for metal additive manufacturing
Authors
Abdelrahman Farrag
Yuxin Yang
Nieqing Cao
Daehan Won
Yu Jin
Publication date
15-04-2024
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-024-00612-1

Premium Partners