Skip to main content

Advertisement

Log in

Exploring the Role of Bacterial Extracellular Polymeric Substances for Sustainable Development in Agriculture

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The incessant need to increase crop yields has led to the development of many chemical fertilizers containing NPK (nitrogen–phosphorous–potassium) which can degrade soil health in the long term. In addition, these fertilizers are often leached into nearby water bodies causing algal bloom and eutrophication. Bacterial secondary metabolites exuded into the extracellular space, termed extracellular polymeric substances (EPS) have gained commercial significance because of their biodegradability, non-toxicity, and renewability. In many habitats, bacterial communities faced with adversity will adhere together by production of EPS which also serves to bond them to surfaces. Typically, hygroscopic, EPS retain moisture in desiccating conditions and modulate nutrient exchange. Many plant growth-promoting bacteria (PGPR) combat harsh environmental conditions like salinity, drought, and attack of pathogens by producing EPS. The adhesive nature of EPS promotes soil aggregation and restores moisture thus combating soil erosion and promoting soil fertility. In addition, these molecules play vital roles in maintaining symbiosis and nitrogen fixation thus enhancing sustainability. Thus, along with other commercial applications, EPS show promising avenues for improving agricultural productivity thus helping to address land scarcity as well as minimizing environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tecon R, Or D (2017) Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 41:599–623. https://doi.org/10.1093/femsre/fux039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Karim AHMZ (2013) Impact of a growing population in agricultural resource management: exploring the global situation with a micro-level example. Asian Social Science 9:14–17. https://doi.org/10.5539/ass.v9n15p14

    Article  Google Scholar 

  3. Kumari KA, Kumar KNR, Narasimha CHR (2014) Adverse effects of chemical fertilizers and pesticides on human health and environment. JCHPS Special Issue 3:150–151

    Google Scholar 

  4. Mohapatra B, Verma DK, Sen A, Panda BB, Asthir B (2013) Bio-fertilizers—a gateway to sustainable agriculture. Popular Kheti 1:97–106

    Google Scholar 

  5. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117. https://doi.org/10.1002/jobm.200610203

    Article  PubMed  CAS  Google Scholar 

  6. Kosaric N (1992) Biosurfactants in industry. Pure Appl Chem 64:1731–1737. https://doi.org/10.1351/pac199264111731

    Article  CAS  Google Scholar 

  7. Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434. https://doi.org/10.1007/s00253-001-0924-1

    Article  PubMed  CAS  Google Scholar 

  8. Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:1–18. https://doi.org/10.3389/fmicb.2014.00697

    Article  Google Scholar 

  9. Costa Ohana YA, Raaijmakers Jos M, Kuramae Eiko E (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636. https://doi.org/10.3389/fmicb.2018.01636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Parnasa R, Nagar E, Sendersky E, Reich Z, Simkovsky R, Golden S, Schwarz R (2016) Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongates. Sci Rep 6:32209. https://doi.org/10.1038/srep32209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. https://doi.org/10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smirnova TA, Didenko LV, Azizbekyan RR, Romanova YuM (2010) Structural and functional characteristics of bacterial biofilms. Mikrobiologiya 79:435–446. https://doi.org/10.1134/S0026261710040016

    Article  CAS  Google Scholar 

  13. Lebre P, De Maayer P, Cowan D (2017) Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15:5–10. https://doi.org/10.1038/nrmicro.2017.16

    Article  CAS  Google Scholar 

  14. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. https://doi.org/10.3390/ijms131114002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nanjani SG, Soni HP (2012) Diversity and EPS production potential of halotolerant bacteria from veraval and dwarka. IOSR J Pharm Biol Sci 2:20–25. https://doi.org/10.9790/3008-0222025

    Article  Google Scholar 

  16. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Marine Drugs 8:1779–1802. https://doi.org/10.3390/md8061779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sengupta D, Datta S, Biswas D (2018) Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Appl Microbiol Biotechnol 102:1587–1598. https://doi.org/10.1007/s00253-018-8745-7

    Article  PubMed  CAS  Google Scholar 

  18. Audy J, Labrie S, Roy D, Lapointe G (2010) Sugar source modulates exopolysaccharide biosynthesis in Bifidobacterium longum subsp. longum CRC 002. Microbiol 156:653–664. https://doi.org/10.1099/mic.0.033720-0

    Article  CAS  Google Scholar 

  19. Celik GY, Aslim B, Beyatli Y (2008) Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12strains. Carbohydr Polym 73:178–182. https://doi.org/10.1016/j.carbpol.2007.11.021

    Article  CAS  Google Scholar 

  20. Cornish A, Greenwood JA, Jones CW (1988) The relationship between giucose transport and the production of succinoglucan exopolysaccharide by Agrobacterium radiobacter. J Gen Microbiol 134:3111–3122. https://doi.org/10.1099/00221287-134-12-3111

    Article  PubMed  CAS  Google Scholar 

  21. Freitas F, Alves VD, Gouveia AR, Pinheiro C, Torres CAV, Grandfils C et al (2014) Controlled production of exopolysaccharides from Enterobacter A47 as a function of carbon source with demonstration of their film and emulsifying abilities. Appl Biochem Biotechnol 172:641–657. https://doi.org/10.1007/s12010-013-0560-0

    Article  PubMed  CAS  Google Scholar 

  22. Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11:663. https://doi.org/10.1016/S0958-6946(01)00112-1

    Article  CAS  Google Scholar 

  23. Lee JW, Yeomans WG, Allen AL, Deng F, Gross RA, Kaplan DL (1999) Biosynthesis of novel exopolymers by Aureobasidium pullulans. Appl Environ Microbiol 65:52–62. https://doi.org/10.1128/AEM.65.12.5265-5271.1999

    Article  Google Scholar 

  24. Redmile-Gordon M, Evershed R, Hirsch P, White RP, Goulding K (2015) Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biol Biochem 88:257–267. https://doi.org/10.1016/j.soilbio.2015.05.025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Morin A (1998) Screening of polysaccharide-producing microorganisms, factors influencing the production and recovery of microbial polysaccharides. In: Dumitriu S (ed) Polysaccharides—structural diversity and functional versatility. New York, Marcel Dekker Inc. Publication, pp 275–296

    Google Scholar 

  26. Zisu B, Shah NP (2003) Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J Dairy Sci 86:3405–3415. https://doi.org/10.3168/jds.s0022-0302(03)73944-7

    Article  PubMed  CAS  Google Scholar 

  27. Czaczyk K, Myszka K (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish J Environ Stud 16:799–806

    CAS  Google Scholar 

  28. Gamar-Nourani L, Blondeau K, Simonet JM (1998) Influence of culture conditions on exopolysaccharide production by Lactobacillus rhamnosus strain C83. J Appl Microbiol 85:664–672. https://doi.org/10.1111/j.1365-2672.1998.00574.x

    Article  CAS  Google Scholar 

  29. Nichols CM, Bowman JP, Guezennec J (2005) Effects of incubation temperature on growth and production of exopolysaccharides by an Antarctic Sea ice bacterium grown in batch culture. Appl Environ Microbiol 71:3519–3523. https://doi.org/10.1128/AEM.71.7.3519-3523.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ladrat CD, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:1–15. https://doi.org/10.3389/fchem.2014.00085

    Article  CAS  Google Scholar 

  31. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. TIBTECH 16:41–46. https://doi.org/10.1016/s0167-7799(97)01139-6

    Article  CAS  Google Scholar 

  32. Mirshafiey A, Rehm BH (2009) Alginate and its comonomer mannuronic acid: medical relevance as drugs. In: Rehm B (ed) Alginates: biology and applications. Microbiology monographsss. Springer, Berlin, Heidelberg

    Google Scholar 

  33. Yang ST (2007) Bioprocessing for value-added products from renewable resources. Elsevier, London

    Google Scholar 

  34. Rehm BHA (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Norfolk

    Google Scholar 

  35. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035

    Article  CAS  Google Scholar 

  36. Van Kranenburg R, Boels IC, Kleerebezem M, de Vos WM (1999) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol 104:98–504. https://doi.org/10.1016/s0958-1669(99)00017-8

    Article  Google Scholar 

  37. Rodrigues AC (2012) Interrelationship Bradyrhizobium and PGPB and Cowpea: evaluation of the enzymatic activity and symbiotic performance. Thesis, Federal Agricultural University of Pernambuco

  38. Rodrigues AC, Silveira JAG, Bonifacio A, Figueiredo MVB (2013) Metabolism of nitrogen and carbon: optimization of biological nitrogen fixation and cowpea development. Soil Biol Biochem 67:226–234. https://doi.org/10.1016/j.soilbio.2013.09.001

    Article  CAS  Google Scholar 

  39. Rodrigues AC, Bonifacio A, Antunes JEL, Silveira JAG, Figueiredo MVB (2013) Minimization of oxidative stress in cowpea nodules by the interrelationship between Bradyrhizobium sp. and plant growth promoting bacteria. Appl Soil Ecol 64:245–251. https://doi.org/10.1016/j.apsoil.2012.12.018

    Article  Google Scholar 

  40. Castellane TCL, Lemos VFM, Lemos EGM (2014) Evaluation of the biotechnological potential of Rhizobium tropici strains for exopolysaccharide production. Carbohydr Polym 111:191–197. https://doi.org/10.1016/j.carbpol.2014.04.066

    Article  PubMed  CAS  Google Scholar 

  41. World Agriculture: Towards 2015/2030 an FAO Perspective. Edited by JelleBruinsma.

  42. Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9:34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  43. Luo Z, Wang E, Sun OJ (2010) Soil carbon change and its responses to agricultural practices in Australian agroecosystems: a review and synthesis. Geoderma 155:211–223. https://doi.org/10.1016/j.geoderma.2009.12.012

    Article  CAS  Google Scholar 

  44. Haktanır.KToprakKirliliğiveAmaçDışıTarımToprağıKullanımı.TarımveMühendislikDergisi, TMMOB ZiraatMühendisleriOdasıYayınları. 1989, Sayı: 33.

  45. Hopkins BG, Horneck DA, Stevens RG, Ellsworth JW, Sullivan DM (2007) Managing Irrigation Water Quality for crop production in the Pacific Northwest, A Pacific Northwest Extension publication.

  46. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  47. Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A review. Agron Sustain Dev 33:751–765. https://doi.org/10.1007/s13593-013-0142-0

    Article  CAS  Google Scholar 

  48. Malus´a E, Sas-Paszt L, Ciesielska J, (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:1–12. https://doi.org/10.1100/2012/491206

    Article  Google Scholar 

  49. Wu Z, Guo L, Qin S, Li C (2012) Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J Ind Microbiol Biotechnol 39:317–327. https://doi.org/10.1007/s10295-011-1028-2

    Article  PubMed  CAS  Google Scholar 

  50. Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319. https://doi.org/10.4067/S0718-95162010000100006

    Article  Google Scholar 

  51. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  PubMed  CAS  Google Scholar 

  52. Zakry FAA, Shamsuddin ZH, Rahim KA, Zakaria ZZ, Anuar AR (2012) Inoculation of Bacillus sphaericus UPMB-10 to young oil palm and measurement of its uptake of fixed nitrogen using the N isotope dilution technique. Microbial Environ. 27:257–262. https://doi.org/10.1264/jsme2.ME11309

    Article  Google Scholar 

  53. Gouda S, Kerry RG, Das G, Paramithiotis S, Patra SHS, JK, (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

    Article  PubMed  Google Scholar 

  54. Wu Y, Cai P, Jing X, Niu X, Ji D, Ashry NM, Gao C, Huang Q (2019) Soil biofilm formation enhances microbial community diversity and metabolic activity. Environ Int 132:105–116. https://doi.org/10.1016/j.envint.2019.105116

    Article  CAS  Google Scholar 

  55. Martens DA, Frankenberger WRT (1993) Soil saccharide extraction and detection. Plant Soil 149:145–147. https://doi.org/10.1007/BF00010772

    Article  CAS  Google Scholar 

  56. Tisdall JM, Oades JM (1982) Organic matter and water stable aggregates in soils. J Soil Sci 33:141–163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  57. Mu minah, Baharuddin, Subair H, Fahruddin, Darwisah, B, (2015) Isolation and screening of exopolysaccharide producing bacterial (EPS) from potato rhizosphere for soil aggregation. Int J Curr Microbiol App Sci 4:341–349

    CAS  Google Scholar 

  58. Lin D, Ma W, Jin Z, Wang Y, Huang Q, Cai P (2016) Interactions of EPS with soil minerals: a combination study by ITC and CLSM. Colloids Surf B 138:10–16. https://doi.org/10.1016/j.colsurfb.2015.11.026

    Article  CAS  Google Scholar 

  59. Totsche K, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R et al (2017) Microaggregates in soils. J Plant Nutr Soil Sci 181:104–136. https://doi.org/10.1002/jpln.201600451

    Article  CAS  Google Scholar 

  60. Vardharajula S, Skz A, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26. https://doi.org/10.1007/s00374-009-0401-z

    Article  CAS  Google Scholar 

  61. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:322. https://doi.org/10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  62. Redmile-Gordon M, Gregory AS, White RP, Watts CW (2020) Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma 363:114143. https://doi.org/10.1016/j.geoderma.2019.114143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Esbelin J, Santos T, Hébraud M (2018) Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol 69:82–88. https://doi.org/10.1016/j.fm.2017.07.017

    Article  PubMed  CAS  Google Scholar 

  64. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hansen L, Fonnesbech Vogel B (2011) Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: survival and transfer to salmon products. Int J Food Microbiol 146:88–93. https://doi.org/10.1016/j.ijfoodmicro.2011.01.032

    Article  PubMed  CAS  Google Scholar 

  66. Chenu C, Roberson EB (1996) Diffusion of glucose in microbial extracellular polysaccharide as affected by water potential. Soil Biol Biochem 28:877–884. https://doi.org/10.1016/0038-0717(96)00070-3

    Article  CAS  Google Scholar 

  67. Vardharajula S, Skz A (2014) Exopolysaccharide production by drought tolerant Bacillus spp. and effect on soil aggregation under drought stress. J Microbiol Biotechnol Food Sci 4:51–57. https://doi.org/10.15414/jmbfs.2014.4.1

    Article  Google Scholar 

  68. Hartel PG, Alexander M (1986) Role of extracellular polysaccharide production and clays in the desiccation tolerance of cowpea Bradyrhizobia. Soil Sci Soc Am J 50:1193–1198. https://doi.org/10.2136/sssaj1986.03615995005000050020x

    Article  CAS  Google Scholar 

  69. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18. https://doi.org/10.3390/agronomy7010018

    Article  CAS  Google Scholar 

  70. Bhise K, Dandge P (2019) Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability. Arch Agron Soil Sci 65:1955–1968. https://doi.org/10.1080/03650340.2019.1584395

    Article  Google Scholar 

  71. Zhang SY, Fan C, Wang YX, Xia YS, Wei X, Cui XL (2018) Salt-tolerant and plant growth-promoting bacteria isolated from high-yield paddy soil. Can J Microbiol. https://doi.org/10.1139/cjm-2017-0571

    Article  PubMed  Google Scholar 

  72. Vaishnav A, Shukla AK, Sharma A et al (2019) Endophytic bacteria in plant salt stress tolerance: current and future prospects. J Plant Growth Regul 38:650–668. https://doi.org/10.1007/s00344-018-9880-1

    Article  CAS  Google Scholar 

  73. Wood JM (2015) Bacterial responses to osmotic challenges. J Gen Physiol 145:381–388. https://doi.org/10.1085/jgp.201411296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 2012:1183–1191. https://doi.org/10.1590/S1517-838220120003000046

    Article  Google Scholar 

  75. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere 21:214–222. https://doi.org/10.1016/S1002-0160(11)60120-3

    Article  CAS  Google Scholar 

  76. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162. https://doi.org/10.1007/s00374-004-0766-y

    Article  CAS  Google Scholar 

  77. Ghalab NM, Tantawy EA, Khalil HMA, Shaban KA (2016) Plant growth promoters substances that excreting from bacteria and cyanobacteria as essential factors for alleviation soil salt stress on rice plant. J Microbiol Res 6:103–110. https://doi.org/10.5923/j.microbiology.20160605.02

    Article  Google Scholar 

  78. Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. https://doi.org/10.1146/annurev-genet-110410-132549

    Article  PubMed  CAS  Google Scholar 

  79. Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170. https://doi.org/10.1111/j.1574-6976.2009.00205.x

    Article  PubMed  CAS  Google Scholar 

  80. Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441. https://doi.org/10.1146/annurev.genet.42.110807.091427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7. https://doi.org/10.1186/1475-2859-5-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Janczarek M (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 12:7898–7933. https://doi.org/10.3390/ijms12117898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Laus MC, Logman TJ, Lamers GE, Van Brussel AA, Carlson RW, Kijne JW (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713. https://doi.org/10.1111/j.1365-2958.2006.05057.x

    Article  PubMed  CAS  Google Scholar 

  84. Marczak M, Mazur A, Koper P, Żebracki K, Skorupska A (2017) Synthesis of rhizobial exopolysaccharides and their importance for symbiosis with legume plants. Genes 8:360. https://doi.org/10.3390/genes8120360

    Article  PubMed Central  CAS  Google Scholar 

  85. Mendis HC, Madzima TF, Queiroux C, Jones KM (2016) Function of succinoglycan polysaccharide in Sinorhizobium meliloti host plant invasion depends on succinylation, not molecular weight. MBio 7(3):e00606–e616. https://doi.org/10.1128/mBio.00606-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gharzouli R, Carpn MA, Couderc F, Benguedouar A, Poinsot V (2013) Relevance of fucose-rich extracellular Polysaccharides produced by Rhizobium sullae strains nodulating Hedysarumcoronarium legumes. Appl Environ Microbiol 79:1764–1776. https://doi.org/10.1128/AEM.02903-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Simsek S, Wood K, Reuhs BL (2013) Structural analysis of succinoglycan oligosaccharides from Sinorhizobium meliloti strains with different host compatibility phenotypes. J Bacteriol 195:2032–2038. https://doi.org/10.1128/jb.00009-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kelly SJ, Muszynski A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW (2013) Conditional requirement for Exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol Plant Microbe Interact 26:319–329. https://doi.org/10.1094/mpmi-09-12-0227-r

    Article  PubMed  CAS  Google Scholar 

  89. Barooah PP, Sen A (1964) Nitrogen fixation by Beijerinckia in relation to slime formation. Arch Mikrobiol 48:381–385. https://doi.org/10.1007/bf00405981

    Article  PubMed  CAS  Google Scholar 

  90. Hill S (1971) Influence of oxygen concentration on the colony type of Derxia gummosa grown on nitrogen free media. J Gen Microbiol 67:77–83

    Article  CAS  Google Scholar 

  91. Jain DK, Prevost D, Bordeleau LM (1990) Role of bacterial polysaccharides in the depression of ex-planta nitrogenase activity with rhizobia. FEMS Microbiol Ecol 73:167–174

    Article  CAS  Google Scholar 

  92. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13. https://doi.org/10.3389/fenvs.2014.00053

    Article  CAS  Google Scholar 

  93. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35. https://doi.org/10.1007/s13213-015-1112-3

    Article  CAS  Google Scholar 

  95. Zhao W, Zhang J, Jiang YY, Zhao X, Hao XN, Li L, Yang ZN (2018) Characterization and antioxidant activity of the exopolysaccharide produced by Bacillus amyloliquefaciens GSBa-1. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1801.01012

    Article  PubMed  Google Scholar 

  96. Meneses C, Gonçalves T, Alquéres S et al (2017) Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization. Plant Soil 416:133. https://doi.org/10.1007/s11104-017-3201-5

    Article  CAS  Google Scholar 

  97. Kiraly Z, El-Zahaby HM, Klement Z (1997) Role of extracellular polysaccharide (EPS) slime of plant pathogenic bacteria in protecting cells to reactive oxygen species. J Phytopathol 145:59–68. https://doi.org/10.1111/j.1439-0434.1997.tb00365.x

    Article  CAS  Google Scholar 

  98. Mohamed SS, Amer SK, Selim MS, Rifaat HM (2018) Characterization and applications of exopolysaccharide produced by marine Bacillus altitudinis MSH2014 from Ras Mohamed, Sinai, Egypt. Egypt J Basic Appl Sci 5:204–209. https://doi.org/10.1016/j.ejbas.2018.05.009

    Article  Google Scholar 

  99. Rajoka MSR, Mehwish HM, Hayat HF et al (2018) Characterization, the antioxidant and antimicrobial activity of exopolysaccharide isolated from poultry origin lactobacilli. Probiot Antimicro Prot. https://doi.org/10.1007/s12602-018-9494-8

    Article  Google Scholar 

  100. Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 5:783–793. https://doi.org/10.1093/mp/ssq035

    Article  CAS  Google Scholar 

  101. Shan L, He P, Sheen J (2007) Endless Hide-and-Seek: Dynamic co-evolution in plant-bacterium warfare. J Integr Plant Biol 49:105–111. https://doi.org/10.1111/j.1744-7909.2006.00409.x

    Article  CAS  Google Scholar 

  102. Blainski JML, Neto ACR, Luiz C, Rossi MJ, Piero RMD (2017) Lactobacillus plantarum exopolysaccharides induce resistance against tomato bacterial spot. J Agric Sci 9:167–179. https://doi.org/10.5539/jas.v9n2p162

    Article  Google Scholar 

  103. Haggag WM (2007) Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afr J Biotechnol 6:1568–1577. https://doi.org/10.4314/ajb.v6i13.57684

    Article  CAS  Google Scholar 

  104. Guzzo SD, Bach E, Martins EF, Moraes WC (1993) Crude Exopolysaccharides (EPS) from Xanthomonas campestris pv. manihotis, Xanthomonas campestris pv. campestris and Commercial Xanthan Gum as inducers of protection in coffee plants against Hemileia vastatrix. J Phytopathol 139:119–128. https://doi.org/10.1111/j.1439-0434.1993.tb01408.x

    Article  CAS  Google Scholar 

  105. Park K, Kloepper JW, Ryu CM (2008) Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J Microbiol Biotechnol 18:1095–1100

    PubMed  CAS  Google Scholar 

  106. Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947. https://doi.org/10.1128/JB.00858-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Camacho-Chab JC, Lango-Reynoso F, Castañeda-Chávez MR, Galaviz-Villa I, Hinojosa-Garro D, Ortega-Morales BO (2016) Implications of extracellular polymeric substance matrices of microbial habitats associated with coastal aquaculture systems. Water 8:1–21. https://doi.org/10.3390/w8090369

    Article  Google Scholar 

  108. Deschatre M, Lescop B, Simon-Colin C, Ghillebaert F, Guezennec J, Rioual S (2015) Characterization of exopolysaccharides after sorption of silver ions in aqueous solution. J Environ Chem Eng 3:210–216. https://doi.org/10.1016/j.jece.2014.09.021

    Article  CAS  Google Scholar 

  109. More TT, Yadav JS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25. https://doi.org/10.1016/j.jenvman.2014.05.010

    Article  PubMed  CAS  Google Scholar 

  110. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654. https://doi.org/10.3390/ijms12010633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319:291–297. https://doi.org/10.1016/j.bbrc.2004.04.155

    Article  PubMed  CAS  Google Scholar 

  112. Rasulov BA, Yilli A, Aisa HA (2013) Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1. J Environ Protect 4:989–993. https://doi.org/10.4236/jep.2013.49114

    Article  CAS  Google Scholar 

  113. Pérez JAM, Garcia-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2008) Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J Microbiol Biotechnol 24:2699–2704. https://doi.org/10.1007/s11274-008-9800-9

    Article  CAS  Google Scholar 

  114. Wei W, Wang Q, Li A, Yang J, Ma F, Pi S, Wu D (2016) Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: adsorption behavior and mechanism assessment. Sci Rep 6:31575. https://doi.org/10.1038/srep31575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Shameer S (2016) Biosorption of lead, copper and cadmium using the extracellular polysaccharides (EPS) of Bacillus sp, from solar salterns. 3 Biotech 6:194. https://doi.org/10.1007/s13205-016-0498-3

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fang L, Yang S, Huang Q, Xue A, Cai P (2014) Biosorption mechanisms of Cu(II) by extracellular polymeric substances from Bacillus subtilis. Chem Geol 386:143–151. https://doi.org/10.1016/j.chemgeo.2014.08.017

    Article  CAS  Google Scholar 

  117. Borrock DM, Fein JB (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of gram negative bacteria: testing non-electrostatic, diffuse, and triple layer models. J Colloid Interface Sci 286:110–126. https://doi.org/10.1016/j.jcis.2005.01.015

    Article  CAS  Google Scholar 

  118. Edward A, Melchias G, Prabhu J, Wilson A, Anbananthan V, Sivaperumal K (2011) Detection of exopolysaccharides/bioemulsifier producing bacterial isolates from petroleum contaminated soil. Int J Biol Technol 2:1–7

    CAS  Google Scholar 

  119. Huang KH, Chen BY, Shen FT, Young CC (2012) Optimization of exopolysaccharide production and diesel oil emulsifying properties in root nodulating bacteria. World J Microbiol Biotechnol 28:1367–1373. https://doi.org/10.1007/s11274-011-0936-7

    Article  PubMed  CAS  Google Scholar 

  120. Bhattacharyya R, Das S, Bhattacharya R, Chatterjee M, Dey A (2017) Rhizobial exopolysaccharides: a novel biopolymer for legume-rhizobia symbiosis and environmental monitoring. In: Zaidi A, Khan MS, Musarrat J (eds) Microbes for legume improvement. Springer International Publishing, London, pp 119–133

    Chapter  Google Scholar 

  121. Gauri SS, Mandal SM, Pati BR (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95:331–338. https://doi.org/10.1007/s00253-012-4159-0

    Article  PubMed  CAS  Google Scholar 

  122. Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492. https://doi.org/10.1139/m92-080

    Article  Google Scholar 

  123. Denton MD, Pearce DJ, Ballard RA, Hannah MC, Mutch LA, Norng S, Slattery JF (2009) A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biol Biochem 41:2508–2516. https://doi.org/10.1016/j.soilbio.2009.09.009

    Article  CAS  Google Scholar 

  124. Corich V, Bosco E, Giacomini A, Basaglia M, Squartini A, Nuti MP (1996) Fate of genetically modified Rhizobium leguminosarum biovar viciae during long-term storage of commercial inoculants. J Appl Bacteriol 81:319–328. https://doi.org/10.1111/j.1365-2672.1996.tb04334.x

    Article  PubMed  CAS  Google Scholar 

  125. van Elsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil: a review. Biol Fertil Soils 10:127–133. https://doi.org/10.1007/BF00336248

    Article  Google Scholar 

  126. Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770. https://doi.org/10.1016/S0734-9750(98)00003-2

    Article  CAS  Google Scholar 

  127. Yabur R, Bashan Y, Hernández-Carmona G (2007) Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J Appl Phycol 19:43–53. https://doi.org/10.1007/s10811-006-9109-8

    Article  CAS  Google Scholar 

  128. Rodrigues AC, Vendruscolo CT, Moreira AS, Santana MVS, Oliveira JDP, Bonifacio A, Figueiredo MVB (2015) Rhizobium tropici exopolysaccharides as carriers improve the symbiosis of cowpea-Bradyrhizobium-Paenibacillus. Afr J Microbiol Res 9:2037–2050. https://doi.org/10.5897/AJMR2015.7592

    Article  CAS  Google Scholar 

  129. Flores Candia JL, Deckwer WD (1999) Xanthan. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 5. Wiley-Interscience Publication, New York, pp 2706–2707

    Google Scholar 

  130. Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme Microbial Technol 39:197–207. https://doi.org/10.1016/j.enzmictec.2005.10.019

    Article  CAS  Google Scholar 

  131. Blackwell PS (2000) Management of water repellency in Australia and risks associated with preferential flow, pesticide concentration and leaching. J Hydrol 231–232:384–395. https://doi.org/10.1016/S0022-1694(00)00210-9

    Article  Google Scholar 

  132. Street JC (1969) Methods of removal of pesticides residues. Can Med Ass J 100:154–160

    PubMed  CAS  PubMed Central  Google Scholar 

  133. Petrovic M, Barcelo D (2004) Analysis and fate of surfactants in sludge and sludge-amended soil. Trends Anal Chem 23:10–11. https://doi.org/10.1016/j.trac.2004.07.015

    Article  CAS  Google Scholar 

  134. van Kranenburg R, Marugg JD, van Swam II, Willem NJ, de Vos WM (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397. https://doi.org/10.1046/j.1365-2958.1997.3521720.x

    Article  PubMed  Google Scholar 

  135. Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus SFi6. J Bacteriol. 178:1680–1690. https://doi.org/10.1128/jb.178.6.1680-1690.1996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496. https://doi.org/10.3389/fmicb.2015.00496

    Article  PubMed  PubMed Central  Google Scholar 

  137. Chang W, Mortel MV, Nielsen L, Guzmán GT, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299. https://doi.org/10.1128/JB.00727-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Cytryn E, Sangurdekar D, Streeter JG, Franck WL, Chang WS, Stacey G (2007) Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 189:6751–6762. https://doi.org/10.1128/jb.00533-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Jaszek M, Janczarek M, Kuczyński K, Piersiak T, Grzywnowicz K (2014) The response of the Rhizobium leguminosarum bv. trifolii wild-type and exopolysaccharide-deficient mutants to oxidative stress. Plant Soil 376:75. https://doi.org/10.1007/s11104-013-1959-7

    Article  CAS  Google Scholar 

  140. Song X, Xiong Z, Kong L, Wang G, Ai L (2018) Relationship between putative eps genes and production of exopolysaccharide in Lactobacillus casei LC2W. Front. Microbiol. 9:1882. https://doi.org/10.3389/fmicb.2018.01882

    Article  PubMed  PubMed Central  Google Scholar 

  141. Ferreira AS, Leitão J, Silva I, Pinheiro P, Sousa S, Ramos C, Moreira L (2009) Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol 76:441–450. https://doi.org/10.1128/AEM.01828-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Wang P, Zhong Z, Zhou J, Cai T, Jun Z (2008) Exopolysaccharide biosynthesis is important for Mesorhizobium tianshanense: plant host interaction. Arch Microbiol 189:525–530. https://doi.org/10.1007/s00203-007-0345-3

    Article  PubMed  CAS  Google Scholar 

  143. Janczarek M, Rachwał K, Cieśla J, Ginalska G, Bieganowski, (2015) A Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties. Plant Soil 388:211–227. https://doi.org/10.1007/s11104-014-2320-5

    Article  CAS  Google Scholar 

  144. Deka P, Goswami G, Das P, Gautom T, Chowdhury N, Boro RC, Barooah M (2019) Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Mol Biol Rep 46(1):1079–1091. https://doi.org/10.1007/s11033-018-4566-0

    Article  PubMed  CAS  Google Scholar 

  145. Oliveira ALM, Santos OJAP, Marcelino PRF, Milani KML, Zuluaga MYA, Zucareli C, Gonçalves LSA (2017) Maize inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input. Front Microbiol 8:1873. https://doi.org/10.3389/fmicb.2017.01873

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sankari JU, Dinakar S, Sekar C (2011) Dual effect of Azospirillum exopolysaccharides (EPS) on the enhancement of plant growth and biocontrol of blast (Pyricularia oryzae) disease in upland rice (var ASD-19). J Phytol 3

  147. Paul F, Morin A, Monsan P (1986) Microbial polysaccharides with actual potential industrial applications. Biotechnol Adv 4(2):245–259. https://doi.org/10.1016/0734-9750(86)90311-3

    Article  PubMed  CAS  Google Scholar 

  148. Kang KS, Pettitt DJ (2012) Xanthan, Gellan, Welan, and Rhamsan. In: BeMiller JN, Whistle RL (eds) Industrial gums: polysaccharides and their derivatives. Elsevier, New York, pp 341–397. https://doi.org/10.1016/B978-0-08-092654-4.50017-6

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors remain grateful to the Department of Chemical Technology, University of Calcutta, University Grants Commission of India (UGC) SAP and UGC UPE II for the necessary support to contemplate this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: I.S., S.D.; investigation: I.S.; writing original draft preparation: I.S.; revision and formal analysis: I.S., S.D., D.B.

Corresponding author

Correspondence to Sriparna Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, I., Datta, S. & Biswas, D. Exploring the Role of Bacterial Extracellular Polymeric Substances for Sustainable Development in Agriculture. Curr Microbiol 77, 3224–3239 (2020). https://doi.org/10.1007/s00284-020-02169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02169-y

Navigation