Skip to main content

Advertisement

Log in

Adaptation options under climate change for multifunctional agriculture: a simulation study for western Switzerland

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Besides its primary role in producing food and fiber, agriculture also has relevant effects on several other functions, such as management of renewable natural resources. Climate change (CC) may lead to new trade-offs between agricultural functions or aggravate existing ones, but suitable agricultural management may maintain or even improve the ability of agroecosystems to supply these functions. Hence, it is necessary to identify relevant drivers (e.g., cropping practices, local conditions) and their interactions, and how they affect agricultural functions in a changing climate. The goal of this study was to use a modeling framework to analyze the sensitivity of indicators of three important agricultural functions, namely crop yield (food and fiber production function), soil erosion (soil conservation function), and nutrient leaching (clean water provision function), to a wide range of agricultural practices for current and future climate conditions. In a two-step approach, cropping practices that explain high proportions of variance of the different indicators were first identified by an analysis of variance-based sensitivity analysis. Then, most suitable combinations of practices to achieve best performance with respect to each indicator were extracted, and trade-offs were analyzed. The procedure was applied to a region in western Switzerland, considering two different soil types to test the importance of local environmental constraints. Results show that the sensitivity of crop yield and soil erosion due to management is high, while nutrient leaching mostly depends on soil type. We found that the influence of most agricultural practices does not change significantly with CC; only irrigation becomes more relevant as a consequence of decreasing summer rainfall. Trade-offs were identified when focusing on best performances of each indicator separately, and these were amplified under CC. For adaptation to CC in the selected study region, conservation soil management and the use of cropped grasslands appear to be the most suitable options to avoid trade-offs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ammann C, Spirig C, Leifeld J, Neftel A (2009) Assessment of the nitrogen and carbon budget of two managed temperate grassland fields. Agric Ecosyst Environ 133(3–4):150–162

    Article  CAS  Google Scholar 

  • Arnold J, Williams J (1989) Stochastic generation of internal storm structure at a point. Trans ASAE 32(1):161–166

    Article  Google Scholar 

  • Askegaard M, Olesen J, Rasmussen I, Kristensen K (2011) Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agric Ecosyst Environ 142(3–4):149–160

    Article  CAS  Google Scholar 

  • Bachinger J, Zander P (2007) ROTOR, a tool for generating and evaluating crop rotations for organic farming systems. Eur J Agron 26(2):130–143

    Article  Google Scholar 

  • Bartsch KP, Miegroet HV, Boettinger J, Dobrowolski JP (2002) Using empirical erosion models and GIS to determine erosion risk at Camp Williams, Utah. J Soil Water Conserv 57(1):29–37

    Google Scholar 

  • BFS (2004) Arealstatistik der Schweiz, Bundesamt für Statistik. SwiBFS, Neuchatel

    Google Scholar 

  • BFS (2012) Soil suitability map of switzerland. GEOSTAT, CH-2010 Neuchatel, Switzerland

    Google Scholar 

  • Bindi M, Olesen J (2010) The responses of agriculture in Europe to climate change. Reg Environ Chang 11(S1):151–158

    Article  Google Scholar 

  • BUWAL (2003) Nationales Bodenbeobachtungsnetz: Messresultate 1985–1991 (National soil observation network: results 1985–1991). Schriftenreihe Umwelt Nr. 200. Bundesamt für Umwelt, Wald und Landschaft (Hrsg.), CH-3003 Bern. 134 S., Anhnge 175 S

  • Calanca P (2007) Climate change and drought occurrence in the Alpine region: how severe are becoming the extremes? Glob Planet Chang 57(1–2):151–160

    Google Scholar 

  • CH2011 (2011) Swiss climate change scenarios CH2011. C2SM, MeteoSwiss, Zurich, p 88

  • Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Chang 83(3):381–399

    Article  Google Scholar 

  • Confalonieri R (2010) Monte Carlo based sensitivity analysis of two crop simulators and considerations on model balance. Eur J Agron 33(2):89–93

    Article  Google Scholar 

  • Constantin J, Beaudoin N, Launay M, Duval J, Mary B (2012) Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS model in a temperate climate. Agric Ecosyst Environ 147:36–46

    Article  CAS  Google Scholar 

  • Corwin D, Waggoner B, Rhoades J (1991) A functional model of solute transport that accounts for bypass. J Environ Qual 20:647–658

    Article  CAS  Google Scholar 

  • Dogliotti S, Rossing W, van Ittersum M (2003) Rotat, a tool for systematically generating crop rotations. Eur J Agron 19(2):239–250

    Article  Google Scholar 

  • Doltra J, Laegdsmand M, Olesen J (2011) Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: a combined modeling and experimental approach. Eur J Agron 34(2):83–95

    Article  Google Scholar 

  • Dueri S, Calanca P, Fuhrer J (2007) Climate change affects farm nitrogen loss—a Swiss case study with a dynamic farm model. Agric Syst 93(1–3):191–214

    Article  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.), vol 86. Academic Press, San Diego, pp 83–145

    Google Scholar 

  • Evans R (2002) An alternative way to assess water erosion of cultivated land field-based measurements: and analysis of some results. Appl Geogr 22(2):187–207

    Article  Google Scholar 

  • Flisch R, Sinaj S, Charles R, Richner W (2009) GRUDAF 2009. Principles for fertilisation in arable and fodder production. Agrarforschung 16(2):1–100 (in German)

    Google Scholar 

  • FOEN (2012) Adaptation to climate change in Switzerland. Goals, challenges and fields of action. First part of the Federal Councils strategy. Technical report, adopted on 2 Mar 2012. Edited by the Federal Office for the Environment

  • Fuhrer J, Jasper K (2012) Demand and supply of water for agriculture: influence of topography and climate in pre-alpine, meso-scale catchments. Nat Resour 3:145–155

    Google Scholar 

  • Fuhrer J, Beniston M, Fischlin A, Frei C, Goyette S, Jasper K, Pfister C (2006) Climate risks and their impact on agriculture and forests in Switzerland. Clim Chang 79(1–2):79–102

    Article  CAS  Google Scholar 

  • Ginot V, Gaba S, Beaudouin R, Aries F, Monod H (2006) Combined use of local and ANOVA-based global sensitivity analyses for the investigation of a stochastic dynamic model: application to the case study of an individual-based model of a fish population. Ecol Model 193(3–4):479–491

    Article  Google Scholar 

  • Gobin A, Jones R, Kirkby M, Campling P, Govers G, Kosmas C, Gentile A (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Policy 7(1):25–38

    Article  Google Scholar 

  • Groot J, Rossing W, Jellema A, Stobbelaar D, Renting H, Van Ittersum M (2007) Exploring multi-scale trade-offs between nature conservation, agricultural profits and landscape quality—a methodology to support discussions on land-use perspectives. Agric Ecosyst Environ 120(1):58–69

    Article  Google Scholar 

  • Henke J, Böttcher U, Neukam D, Sieling K, Kage H (2008) Evaluation of different agronomic strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a simulation model. Nutr Cycl Agroecosyst 82(3):299–314

    Article  Google Scholar 

  • Horie T (1994) Crop ontogeny and development. In: Boote K, Bennett J, Sinclair T, Paulson G (eds) Physiology and determination of crop yield. ASA, Madison, pp 153–180

    Google Scholar 

  • IPCC (2007) IPCC 2007: climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani O, Palutikof J, van der Linden P, Hanson C (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK

  • Janssen S, Oomen R, Hengsdijk H, Van Ittersum M (2009) Agricultural management module of FSSIM, production enterprice generator, production technique generator, simple management translator and technical coefficient generator. SEAMLESS Report No.44, SEAMLESS integrated project. In: EU 6th framework programme, con. tech. rep.

  • Jones R, Bissonnais Y, Diaz J, Düwel O, Oygarden L, Bazzoffi P, Prasuhn V, Yordanov Y, Strauss P, Rydell B, Uveges J, Loj G, Vandekerckhove M (2003) Work package 2: nature and extend of soil erosion in Europe-interim report 3.31. EU soil thematic strategy. Technical Working Group on Erosion—European Commission—GD Environment, Brussels

  • Klein T, Calanca P, Holzkämper A, Lehmann N, Roesch A, Fuhrer J (2012) Using farm accountancy data to calibrate a crop model for climate impact studies. Agric Syst 111:23–33

    Article  Google Scholar 

  • Ko J, Ahuja L, Saseendran S, Green T, Ma L, Nielsen D, Walthall C (2011) Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Clim Chang 111(2):445–472

    Article  Google Scholar 

  • Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, Berlin, pp 9–21

    Chapter  Google Scholar 

  • Lal R, Delgado J, Groffman P, Millar N, Dell C, Rotz A (2011) Management to mitigate and adapt to climate change. J Soil Water Conserv 66(4):276–285

    Article  Google Scholar 

  • Lamboni M, Makowski D, Lehuger S, Gabrielle B, Monod H (2009) Multivariate global sensitivity analysis for dynamic crop models. Field Crops Res 113(3):312–320

    Article  Google Scholar 

  • Lehmann N, Finger R, Klein T, Calanca P, Walter A (2013) Adapting crop management practices to climate change: modeling optimal solutions at the field scale. Agric Syst 117:55–65

    Article  Google Scholar 

  • Leifeld J, Bassin S, Fuhrer J (2003) Carbon stocks and carbon sequestration potentials in agricultural soils in Switzerland. Schriftenreihe der FAL 44

  • Long S, Ainsworth E, Leakey A, Nösberger J, Ort D (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921

    Article  CAS  Google Scholar 

  • Marshall K, Blackstock KL, Dunglinson J (2010) A contextual framework for understanding good practice in integrated catchment management. J Environ Plan Manag 53(1):63–89

    Article  Google Scholar 

  • Michael A, Schmidt J, Enke W, Deutschländer T, Malitz G (2005) Impact of expected increase in precipitation intensities on soil loss—results of comparative model simulations. CATENA 61(2–3):155–164

    Article  Google Scholar 

  • Monod H, Naud C, Makowski D (2006) Uncertainty and sensitivity analysis for crop models. In: Wallach D, Makowski D, Jones J (eds) Working with dynamic crop models, pp 55–100

  • Moriondo M, Bindi M, Kundzewicz Z, Szwed M, Chorynski A, Matczak P, Radziejewski M, McEvoy D, Wreford A (2010) Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig Adapt Strateg Glob Chang15(7):657–679

    Article  Google Scholar 

  • Nearing M, Pruski F, O’Neal M (2004) Expected climate change impacts on soil erosion rates: a review. J Soil Water Conserv 59(1):43–50

    Google Scholar 

  • Nearing M, Jetten V, Baffaut C, Cerdan O, Couturier A, Hernandez M, Le Bissonnais Y, Nichols M, Nunes J, Renschler C, Souchère V, van Oost K (2005) Modeling response of soil erosion and runoff to changes in precipitation and cover. CATENA 61(2–3):131–154

    Article  Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan K, Daily G, Goldstein J, Kareiva P, Lonsdorf E, Naidoo R, Ricketts T, Shaw M (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ7(1):4–11

    Article  Google Scholar 

  • Nievergelt J (2002) Nitrat und Fruchtfolgen 20 Jahre lang beobachtet. Agrarforschung 9:28–33

    Google Scholar 

  • Olesen J, Bindi M (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16(4):239–262

    Article  Google Scholar 

  • Olesen J, Trnka M, Kersebaum K, Skjelvå g A, Seguin B, Peltonen-Sainio P, Rossi F, Kozyra J, Micale F (2011) Impacts and adaptation of European crop production systems to climate change. Eur J Agron 34(2):96–112

    Article  Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Chang 14(1):53–67

    Article  Google Scholar 

  • Power A (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B 365(1554):2959–2971

    Article  Google Scholar 

  • Prasuhn V (2012) On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Tillage Res 120:137–146

    Article  Google Scholar 

  • Prasuhn V, Liniger HP, Hurni H, Friedli S (2007) Carte du risque d’érosion du sol en Suisse. Rev Suisse Agric 39(2):53–59

    Google Scholar 

  • Prasuhn V, Liniger H, Gisler S, Herweg K, Candinas A, Clément JP (2013) A high-resolution soil erosion risk map of Switzerland as strategic policy support system. Land Use Policy 32:281–291

    Article  Google Scholar 

  • Renard K, Foster G, Weesies G, McCool D, Yoder D (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). US Department of Agriculture, Agriculture Research Service. Agriculture handbook no. 703, p 384

  • Renting H, Rossing W, Groot J, Vander Ploeg J, Laurent C, Perraud D, Stobbelaar D, Van Ittersum M (2009) Exploring multifunctional agriculture. A review of conceptual approaches and prospects for an integrative transitional framework. J Environ Manag 90:112–123

    Article  Google Scholar 

  • Rossing W, Zander P, Josien E, Groot J, Meyer B, Knierim A (2007) Integrative modelling approaches for analysis of impact of multifunctional agriculture: a review for France, Germany and The Netherlands. Agric Ecosyst Environ 120:41–57

    Article  Google Scholar 

  • Rötter R, Carter T, Olesen J, Porter J (2011) Crop-climate models need an overhaul. Nat Clim Chang 1(4):175–177

    Article  Google Scholar 

  • Ruane A, Cecil LD, Horton R, Gordón R, McCollum R, Brown D, Killough B, Goldberg R, Greeley A, Rosenzweig C (2013) Climate change impact uncertainties for maize in Panama: farm information, climate projections, and yield sensitivities. Agric For Meteorol 170:132–145

    Article  Google Scholar 

  • Sacks W, Kucharik C (2011) Crop management and phenology trends in the US corn belt: impacts on yields, evapotranspiration and energy balance. Agric For Meteorol 151(7):882–894

    Article  Google Scholar 

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2007) Global sensitivity analysis. The primer. Wiley, Ltd, Chichester

    Book  Google Scholar 

  • Scholz G, Quinton J, Strauss P (2008) Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. CATENA 72(1):91–105

    Article  Google Scholar 

  • Schönhart M, Schmid E, Schneider U (2011) CropRota—a crop rotation model to support integrated land use assessments. Eur J Agron 34(4):263–277

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice I, Araújo M, Arnell N, Bondeau A, Bugmann H, Carter T, Gracia C, de la Vega-Leinert A, Erhard M, Ewert F, Glendining M, House J, Kankaanpää S, Klein R, Lavorel S, Lindner M, Metzger M, Meyer J, Mitchell T, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes M, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310(5752):1333–1337

    Article  Google Scholar 

  • Semenov M, Barrow E (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Chang 35(4):397–414

    Article  Google Scholar 

  • Soussana JF, Graux AI, Tubiello F (2010) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61(8):2217–28

    Article  CAS  Google Scholar 

  • Stöckle C, Campbell GS (1989) Simulation of crop response to water and nitrogen: an example using spring wheat. Trans ASAE 32(1):66–74

    Article  Google Scholar 

  • Stöckle C, Martin S, Campbell G (1994) CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric Syst 46(3):335–359

    Article  Google Scholar 

  • Supit I, Van Diepen C, de Wit A, Wolf J, Kabat P, Baruth B, Ludwig F (2012) Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agric For Meteorol 164:96–111

    Article  Google Scholar 

  • Torriani D, Calanca P, Schmid S, Beniston M, Fuhrer J (2007) Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Clim Res 34(1):59–69

    Article  Google Scholar 

  • Trnka M, Olesen J, Kersebaum K, Skjelvå g A, Eitzinger J, Seguin B, Peltonen-Sainio P, Rötter R, Iglesias A, Orlandini S, Dubrovský M, Hlavinka P, Balek J, Eckersten H, Cloppet E, Calanca P, Gobin A, Vučetić V, Nejedlik P, Kumar S, Lalic B, Mestre A, Rossi F, Kozyra J, Alexandrov V, Semerádová D, Žalud Z (2011) Agroclimatic conditions in Europe under climate change. Glob Chang Biol 17(7):2298–2318

    Article  Google Scholar 

  • UNCED (1992) United Nations conference on environment and development. Agenda 21d an action plan for the next century.Technical report. In: United Nations conference on environment and development, New York

  • van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter, p 160

  • Van Ittersum M, Howden S, Asseng S (2003) Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agric Ecosyst Environ 97(1–3):255–273

    Article  Google Scholar 

  • Vullioud P (2005) Assolement et rotation des grandes cultures. Rev Suisse Agric 37(4):1–1

    Google Scholar 

  • Weisskopf P, Zihlmann U, Walther U (2001) Einfluss der Bewirtschaftung auf die Stickstoffdynamik im Bodenwasser. Agrarforschung 9:348–353

    Google Scholar 

  • White J, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crops Res 124(3):357–368

    Article  Google Scholar 

  • Yang D, Kanae S, Oki T, Koike T, Musiake K (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17(14):2913–2928

    Article  Google Scholar 

Download references

Acknowlegments

This study was supported by the Swiss National Science Foundation in framework of the National Research Program NRP61. We would like to thank MeteoSwiss for providing weather data. The ENSEMBLES data used in this work were funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged. We are thankful to Raphael Charles who kindly double-checked the reliability of the generated crop rotations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommy Klein.

Appendix

Appendix

See Tables 2, 3, 4, 5 and 6.

Table 2 Changes in seasonal precipitation (%), daily precipitation intensity index (%), and temperature (°C) for two climate scenarios for 2050 (ETH-CLM and SMHIRCA-HadCM3Q3), relative to the baseline (1980–2009), for the A1B emission scenario (CH2011 2011); the daily precipitation intensity index is defined as the sum of daily precipitation amounts for wet days (>1 mm) divided by the number of wet days
Table 3 Overview of the experimental design
Table 4 List of the 50 crop rotations generated
Table 5 Proportion of variance explained (main effects and interactions) by different agricultural practices on sandy loam soil
Table 6 Proportion of variance explained (main effects and interactions) by different agricultural practices on loamy soil

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, T., Holzkämper, A., Calanca, P. et al. Adaptation options under climate change for multifunctional agriculture: a simulation study for western Switzerland. Reg Environ Change 14, 167–184 (2014). https://doi.org/10.1007/s10113-013-0470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-013-0470-2

Keywords

Navigation