Skip to main content
Log in

The co-evolution of integrated corporate financial networks and supply chain networks with insolvency risk

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

In this paper, we develop a modeling framework that integrates supply chain networks and corporate financial networks, and studies the co-evolution of the two types of networks. The framework allows one to investigate the following questions: (1) How do the physical product flows, demands and prices interplay with the corporate financial networks, and evolve over time with varying financial and economic conditions? (2) How do the financial flows, profits, and insolvency risks interplay with the supply chain networks, and evolve over time with varying financial and economic conditions? We illustrate the modeling framework with computational studies. In particular, the computational results demonstrate how the two types of networks interplay and evolve in a business environment similar to the one during the 2008–2009 financial crisis in which the credit markets tightened up and the product demands continued to decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Billio M, Getmansky M, Lo A, Pelizzon L (2010) Econometric measures of systemic risk in the finance and insurance sectors. NBER Working Paper No. 16223

  • Boginski V, Butenko S, Pardalos PM (2005) Statistical analysis of financial networks. Comput Stat Data Anal 48:431–443

    Article  Google Scholar 

  • Chambers DR, Lacey NL (2011) Modern corporate finance: theory and practice (6th edn.). Hayden McNeil Publishing, Plymouth

    Google Scholar 

  • Church S, Clothier M (2009) Circuit City go out of business after 60 years. Bloomberg News, January 16, 2009.

  • Cruz JM, Wakolbinger T (2008) Multiperiod effects of corporate social responsibility on supply chain networks, transaction costs, emissions, and risk. Int J Prod Econ 116(1):61–74

    Article  Google Scholar 

  • Cruz JM, Nagurney A, Wakolbinger T (2006) Financial engineering of the integration of global supply chain networks and social networks with risk management. Naval Res Logistics 53:674–696

    Article  Google Scholar 

  • Fenton S (2009) China bankruptcies create cracks in global supply chain. New York Times, March 9

  • Gabay D, Moulin H (1980) On the uniqueness and stability of Nash equilibria in noncooperative games. In: Bensoussan A, Kleindorfer P, Tapiero CS (eds) Applied stochastic control in econometrics and management science. North-Holland, Amsterdam, pp 271–294

    Google Scholar 

  • Geunes J, Pardalos PM (2003) Network optimization in supply chain management and financial engineering: an annotated bibliography. Networks 42:66–84

    Article  Google Scholar 

  • Hertzel MG, Li Z, Officer MS, Rodgers KJ (2008) Inter-firm linkages and the wealth effects of financial distress along the supply chain. J Financ Econ 87:374–387

    Article  Google Scholar 

  • Korpelevich GM (1977) The extragradient method for finding saddle points and other problems. Matekon 13:35–49

    Google Scholar 

  • Leitner Y (2005) Financial networks: contagion, commitment, and private sector bailouts. J Financ 60(6):2925–2953

    Article  Google Scholar 

  • Liu Z, Cruz JM (2012) Supply chain networks with corporate financial risks and trade credits under economic uncertainty. Int J Prod Econ 137(1):55–67

    Article  Google Scholar 

  • Liu Z, Nagurney A (2007) Financial networks with intermediation and transportation network equilibria: a supernetwork equivalence and reinterpretation of the equilibrium conditions with computations. Comput Manag Sci 4(3):243–281

    Google Scholar 

  • Liu Z, Nagurney A (2009) An integrated electric power supply chain and fuel market network framework: theoretical modeling with empirical analysis for New England. Naval Res Logistics 56(7):600–624

    Article  Google Scholar 

  • McKinsey & Company (2008) Managing global supply chains: McKinsey Global Survey Results. McKinsey Quarterly, August 2008

  • Nagurney A (1993) Network economics: a variational inequality approach. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nagurney A, Dhanda K (2000) Marketable pollution permits in oligopolistic markets with transaction costs. Oper Res 48(3):425–435

    Article  Google Scholar 

  • Nagurney A, Ke K (2001) Financial networks with intermediation. Quant Financ 1:309–317

    Article  Google Scholar 

  • Nagurney A, Ke K (2003) Financial networks with electronic transactions: modelling, analysis, and computations. Quant Financ 3:71–87

    Article  Google Scholar 

  • Nagurney A, Ke K (2006) Financial networks with intermediation: risk management with variable weights. Eur J Oper Res 172:40–63

    Article  Google Scholar 

  • Nagurney A, Siokos S (1997) Financial networks: statics and dynamics. Springer, Berlin

    Book  Google Scholar 

  • Nash JF (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36:48–49

    Article  Google Scholar 

  • Nash JF (1951) Noncooperative games. Ann Math 54:286–298

    Article  Google Scholar 

  • Ohlson JA (1980) Financial ratios and the probabilistic prediction of bankruptcy. J Account Res 18:109–131

    Article  Google Scholar 

  • Raddatz C (2010) Credit chains and sectoral comovement: does the use of trade credit amplify sectoral shocks? Rev Econ Stat 92(4):985–1003

    Article  Google Scholar 

  • Ross S, Westerfield R, Jordan B (2009) Fundamentals of corporate finance standard edition (9th edn.). McGraw-Hill/Irwin, USA

    Google Scholar 

  • Storoy S, Thore S, Boyer M (1975) Equilibrium in linear capital market networks. J Financ 30:1197–1211

    Google Scholar 

  • Thore S (1969) Credit networks. Econometrica 36:42–57

    Google Scholar 

  • Thore S (1970) Programming a credit network under uncertainty. J Money Credit Banking 2:219–246

    Article  Google Scholar 

  • Thore S (1980) Programming the network of financial intermediation. Universitetsforslaget, Oslo, Norway

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zugang Liu.

Appendix

Appendix

1.1 Qualitative properties

We now we provide conditions for existence of a solution to variational inequality (10). We also prove that the \(F(X)\) given by (10) that enters the variational inequality (1) is monotone.

Theorem 2

Existence If \((Q^{1t*}, Q^{2t*}, Q^{3t*}, \lambda ^{t*}, \gamma ^{t*})\) satisfies variational inequality (10) then \(( Q^{1t*}, Q^{2t*}, Q^{3t*})\) is a solution to the variation inequality problem: Determine \(( Q^{1t*}, Q^{2t*}, Q^{3t*} )\in \mathcal{K }^1\) satisfying:

$$\begin{aligned}&\sum _{i=1}^I\sum _{j=1}^J \left[{\partial h_{ij1}^t(q_{j1}^{it*},\Pi _{t-1}^i)\over \partial q_{j1}^{it}}+ c_{it}+{\partial \hat{h}_{ij1}^t(q_{j1}^{it*}, \Pi _{t-1}^j)\over \partial q_{j1}^{it}}\right]\times \left[ q_{j1}^{it}-q_{j1}^{it*}\right]\nonumber \\&\quad +\sum _{i=1}^I\sum _{j=1}^J \left[{\partial h_{ij2}^t(q_{j2}^{it*},\Pi _{t-1}^i)\over \partial q_{j2}^{it}}+{\partial r_{ij}^t(q_{j2}^{it*},\Pi _{t-1}^j)\over \partial q_{j2}^{it}}+ c_{it}+{\partial \hat{h}_{ij2}^t(q_{j2}^{it*}, \Pi _{t-1}^j)\over \partial q_{j2}^{it}}\right]\nonumber \\&\quad \times \left[ q_{j2}^{it}-q_{j2}^{it*}\right]+\sum _{j=1}^J \sum _{m=1}^M\left[ c_{jt}-\rho _m^{t}\left(\sum _{j=1}^Jq^{jt*}_m\right)- {\partial \rho _m^{t}\left(\sum _{j=1}^Jq^{jt*}_m\right)\over \partial q^{jt}_m}q^{jt*}_m \right]\nonumber \\&\quad \times \left[ q^{jt}_m-q^{jt*}_m\right] \ge 0,\quad \forall (Q^{1t},Q^{2t},Q^{3t})\in \mathcal{K}^1, \end{aligned}$$
(31)

where \(\mathcal{K }^1\equiv ((Q^{1t},Q^{2t},Q^{3t})|(Q^{1t},Q^{2t},Q^{3t})\in R_+^{2IJ+JM}\) and (3) and (7) hold).

A solution to (31) is guaranteed to exist provided that the cost functions, the risk functions, and the inverse demand functions are continuously differentiable and the feasible set is nonempty. Moreover, if \(( Q^{1t*}, Q^{2t*}, Q^{3t*} )\) is a solution to (31) then there exist \((\lambda ^{t*}, \gamma ^{t*})\) with \((Q^{1t*}, Q^{2t*}, Q^{3t*},\lambda ^{t*}, \gamma ^{t*})\) being a solution to variational inequality (10).

Proof

Note that the feasible set of (31) is convex, and bounded by constraints (3) and (7). So, the feasible set of (31) is convex and compact. The existence of a solution to (31) is guaranteed from the standard theory of variational inequality since the cost functions, the risk functions, and the inverse demand functions are continuously differentiable, and the feasible set is convex, compact, and nonempty (cf. Nagurney (1993)). The rest of the proof is an analog to Theorem 3 in Nagurney and Dhanda (2000).\(\square \)

Theorem 3

Monotonicity Suppose that all cost functions and risk functions in the model are continuously differentiable and convex, and the inverse demand functions are continuously differentiable and monotonically decreasing. Then the vector F that enters the variational inequality (10) as expressed in (1) is monotone, that is,

$$\begin{aligned} \left<(F(X^{\prime })-F(X^{\prime \prime }))^T,X^{\prime }-X^{\prime \prime }\right> \ge 0,\quad \forall X^{\prime },X^{\prime \prime }\in \mathcal{K }, X^{\prime }\ne X^{\prime \prime }. \end{aligned}$$
(32)

Proof

We can verify that if all cost functions and risk functions in the model are continuously differentiable and convex, and the inverse demand functions are continuously differentiable and monotonically decreasing, then the vector F that enters the variational inequality is convex. Therefore, the vector F is monotone.\(\square \)

1.2 The modified projection method

In the computational procedures, variational inequality (10) as expressed in (1) is solved using the modified projection method [see Korpelevich (1977) and Nagurney (1993)]. The method converges to a solution of the model provided that \(F(X)\) is monotone and Lipschitz continuous, and a solution exists, which is the case of the our model.

  • Step 0 Initialization Start with \(X^0\in \mathcal{K }\) where \(\mathcal{K }\equiv R^{2IJ+IM+I+J}_+\), and select \(\alpha \), such that \(0<\alpha \le {1\over L}\), where \(L\) is the Lipschitz constant for function \(F(X)\). Let \(n:=1\).

  • Step 1 Construction and computation Compute \({\bar{X}}^{n-1}\) by solving the variational inequality subproblem:

    $$\begin{aligned} \left\langle ({\bar{X}}^{n-1}+(\alpha F(X^{n-1})-X^{n-1}))^T,X-{\bar{X}}^{n-1}\right\rangle \ge 0,\quad \forall X\in \mathcal{K}. \end{aligned}$$
    (33)

    In particular, the explicit formulae for the solution to variational inequality (34) are as follows:

    $$\begin{aligned} {\bar{q}}^{itn-1}_{j1}&= \text{ max}\left( 0,q^{itn-1}_{j1}+\alpha \left( \theta _{j}\gamma _{j}^{tn-1}-{\partial h_{ij1}^t(q_{j1}^{itn-1},\Pi _{t-1}^i)\over \partial q_{j1}^{it}}- c_{it}-\lambda ^{itn-1}\right.\right.\nonumber \\&\qquad \qquad -\left.\left.{\partial \hat{h}_{ij1}^t(q_{j1}^{itn-1}, \Pi _{t-1}^j)\over \partial q_{j1}^{it}}\right)\right),\end{aligned}$$
    (34)
    $$\begin{aligned} {\bar{q}}^{itn-1}_{j2}&= \text{ max}\left(0,q^{itn-1}_{j2}+\alpha \left(\theta _{j}\gamma _{j}^{tn-1}-{\partial h_{ij2}^t(q_{j2}^{itn-1},\Pi _{t-1}^i)\over \partial q_{j2}^{it}}-{\partial r_{ij}^t(q_{j2}^{itn-1},\Pi _{t-1}^j)\over \partial q_{j2}^{it}}\right.\right.\nonumber \\&\qquad \qquad -\left.\left.c_{it}-\lambda ^{itn-1} -{\partial \hat{h}_{ij2}^t(q_{j2}^{itn-1}, \Pi _{t-1}^j)\over \partial q_{j2}^{it}}\right)\right),\end{aligned}$$
    (35)
    $$\begin{aligned} {\bar{\lambda }}^{itn-1}&= \text{ max}\left(0,\lambda ^{itn-1}+\alpha \left(\sum _{j=1}^J\left(q_{j1}^{itn-1}+q_{j2}^{itn-1}-PCAP_{it}\right)\right)\right),\end{aligned}$$
    (36)
    $$\begin{aligned} {\bar{q}}^{jtn-1}_m&= \text{ max}\left(0,q^{jtn-1}_m+\alpha \left(\rho _m^{t}\left(\sum _{j=1}^Jq^{jtn-1}_m\right)+ {\partial \rho _m^{t}\left(\sum _{j=1}^Jq^{jtn-1}_m\right)\over \partial q^{jt}_m}q^{jtn-1}_m \right.\right.\nonumber \\&\qquad \qquad \left.\left.-c_{jt}-\gamma _{j}^{tn-1}\right)\right),\end{aligned}$$
    (37)
    $$\begin{aligned} {\bar{\gamma }}^{tn-1}_j&= \text{ max}\left(0,\gamma ^{tn-1}_j+\alpha \left(\sum _{m=1}^Mq_{m}^{jtn-1}-\theta _{j}\sum _{i=1}^I(q_{j1}^{itn-1}+q_{j2}^{itn-1}) \right)\right). \end{aligned}$$
    (38)
  • Step 2 Adaptation Compute \(X^n\) by solving the variational inequality subproblem:

    $$\begin{aligned} \left\langle ({ X}^n+(\alpha F({\bar{X}}^{n-1})-X^{n-1}))^T,X-X^n\right\rangle \ge 0, \quad \forall X\in \mathcal{K }. \end{aligned}$$
    (39)

    In particular, the explicit formulae for the solution to variational inequality (40) are as follows:

    $$\begin{aligned} {q}^{itn}_{j1}&= \text{ max}\left(0,q^{itn-1}_{j1}+\alpha \left(\theta _{j}{\bar{\gamma }_{j}}^{tn-1}-{\partial h_{ij1}^t({\bar{q}}_{j1}^{itn-1},\Pi _{t-1}^i)\over \partial q_{j1}^{it}}\right.\right.\nonumber \\&\qquad \qquad \left.\left.-\, c_{it}-{\bar{\lambda }}^{itn-1}-{\partial \hat{h}_{ij1}^t({\bar{q}}_{j1}^{itn-1}, \Pi _{t-1}^j)\over \partial q_{j1}^{it}}\right)\right),\end{aligned}$$
    (40)
    $$\begin{aligned} {q}^{itn}_{j2}&= \text{ max}\left(0,q^{itn-1}_{j2}+\alpha \left(\theta _{j}{\bar{\gamma }}_{j}^{tn-1}-{\partial h_{ij2}^t({\bar{q}}_{j2}^{itn-1},\Pi _{t-1}^i)\over \partial q_{j2}^{it}}\right.\right.\nonumber \\&\qquad \qquad \left.\left.-\,{\partial r_{ij}^t({\bar{q}}_{j2}^{itn-1},\Pi _{t-1}^j)\over \partial q_{j2}^{it}}-c_{it}-{\bar{\lambda }}^{itn-1}-{\partial \hat{h}_{ij2}^t({\bar{q}}_{j2}^{itn-1}, \Pi _{t-1}^j)\over \partial q_{j2}^{it}}\right)\right),\nonumber \\ \end{aligned}$$
    (41)
    $$\begin{aligned} {\lambda }^{itn}&= \text{ max}\left(0, \lambda ^{itn-1}+\alpha \left(\sum _{j=1}^J\left({\bar{q}}_{j1}^{itn-1}+{\bar{q}}_{j2}^{itn-1}-PCAP_{it}\right)\right)\right),\end{aligned}$$
    (42)
    $$\begin{aligned} {q}^{jtn}_m&= \text{ max}\left(0,q^{jtn-1}_m+\alpha \left(\rho _m^{t}\left(\sum _{j=1}^J{\bar{q}}^{jtn-1}_m\right)+ {\partial \rho _m^{t}\left(\sum _{j=1}^J {\bar{q}}^{jtn-1}_m\right)\over \partial q^{jt}_m} {\bar{q}}^{jtn-1}_m\right.\right.\nonumber \\&\qquad \qquad \left.\left.-\,c_{jt}-{\bar{\gamma }}_{j}^{tn-1} \right)\right),\end{aligned}$$
    (43)
    $$\begin{aligned} {\gamma }^{tn}_j&= \text{ max}\left(0,\gamma ^{tn-1}_j+\alpha \left(\sum _{m=1}^M{\bar{q}}_{m}^{jtn-1}-\theta _{j}\sum _{i=1}^I\left({\bar{q}}_{j1}^{itn-1}+{\bar{q}}_{j2}^{itn-1}\right) \right)\right). \end{aligned}$$
    (44)

1.3 Convergence verification

If \(|X^n-X^{n-1}|_{\infty }\le \epsilon \), for \(\epsilon >0\), a prespecified tolerance, then, stop; otherwise, set \(n:=n+1\) and go to Step 1.

In the computational studies we set the scalar \(\alpha =0.05\) and the tolerance \(\epsilon =0.00001\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z. The co-evolution of integrated corporate financial networks and supply chain networks with insolvency risk. Comput Manag Sci 10, 253–275 (2013). https://doi.org/10.1007/s10287-013-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-013-0161-y

Keywords

Navigation