Skip to main content

Advertisement

Log in

Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The current study investigated the influence of exopolysaccharides (EPSs) producing plant growth–promoting rhizobacteria (PGPR) on the growth, physiology, and soil properties. The pre-isolated and compatible EPS producing PGPR strains were first screened based on improvement in soil aggregates in an incubation study. The screened strains (Rhizobium phaseoli strain Mn-6, Pseudomonas bathysetes strain LB5, and unidentified strain R2) were then employed in pot study for assessing improvements in maize growth, physiology, and soil properties. Eight treatments including T1 = control, T2 = Mn-6, T3 = R2, T4 = LB5, T5 = Mn-6 + R2, T6 = Mn-6 + LB5, T7 = R2 + LB5, and T8 = Mn-6 + R2 + LB5 were applied in completely randomized design (CRD) hexa replicated (half for root and half for soil, and yield attributes). The results depicted that among various treatments, the application of PGPR strain Mn-6 increased plant height, root length, root fresh and dry weight, root length density, SPAD value, leaf areas index, photosynthesis rate, transpiration, and stomatal conductance by 24, 79, 72, 90, 49, 35, 23, 21, 75, and 77%, respectively, compared with non-inoculated treatment. Similarly, significant improvement in maize yield and soil physical properties was also observed in response to the application of EPS-producing PGPR. Therefore, it is concluded that the application of EPS producing PGPR is an effective strategy to improve plant growth, physiology, yield, and soil physical properties. Moreover, EPS-producing PGPR should be exploited in field studies for their potential in improving plant growth and soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S. T., Weigel, D., & Kemen, E. M. (2016). Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biology, 14(1), e1002352.

  • Alami, Y., Achouak, W., Marol, C., & Heulin, T. (2000). Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Applied Environmental Microbiology, 66(8), 3393–3398.

  • Ashraf, M., Hussain, F., & Hasnain, S. (2005, June). Exo-polysaccharides (EPS) producing biofilm bacteria in improving physico-chemical characteristics of the salt-affected soils. In Proceedings of the First International Conference on Environmentally Sustainable Development v. 1–3.

  • Aslantaş, R., Cakmakçi, R., & Şahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae, 111(4), 371–377.

    Article  Google Scholar 

  • Babur, E., & Dindaroglu, T. (2020). Seasonal changes of soil organic carbon and microbial biomass carbon in different forest ecosystems. In: I. Uher (Ed) Environmental Factors Affecting Human Health, pp. 115–136. https://doi.org/10.5772/intechopen.90656

  • Babur, E., Kara, O., Fathi, R. A., Susam, Y. E., Riaz, M., Arif, M., & Akhtar, K. (2021a). Wattle fencing improved soil aggregate stability, organic carbon stocks and biochemical quality by restoring highly eroded mountain region soil. Journal of Environmental Management, 288, 112489.

  • Babur, E., Dindaroğlu, T., Solaiman, Z. M., & Battaglia, M. L. (2021b). Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst Ecosystems. Science of the Total Environment, 775, 145868.

  • Benard, P., Zarebanadkouki, M., Brax, M., Kaltenbach, R., Jerjen, I., Marone, F., Couradeau, E., Felde, V. J., Kaestner, A., & Carminati, A. (2019). Microhydrological niches in soils: How mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots. Vadose Zone Journal, 18(1), 1–10.

    Article  CAS  Google Scholar 

  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(66), 1–10.

    Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Eds.) Methods of Soil Analysis Part 1. Physical and Mineralogical Methods Agronomy Monograph No. 9, (2nd Ed., pp. 363–382) Madison, WI, USA.

  • Brady, N. C., & Weil, R. R. (1996). The nature and properties of soils (No. Ed. 11). Prentice-Hall Inc.

  • Briar, S. S., Fonte, S. J., Park, I., Six, J., Scow, K., & Ferris, H. (2011). The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biology and Biochemistry, 43(5), 905–914.

    Article  CAS  Google Scholar 

  • Busse, M. D., & Bottomley, P. J. (1989). Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and nonpermeating solutes. Applied Environmental Microbiology, 55, 2431–2436.

    Article  CAS  Google Scholar 

  • Çakmakçı, R., Kantar, F., & Sahin, F. (2001). Effect of N2-fixing bacterial inoculations on yield of sugar beet and barley. Journal of Plant Nutrition and Soil Science, 164(5), 527–531.

    Article  Google Scholar 

  • Canbolat, M. Y., Bilen, S., Çakmakçı, R., Şahin, F., & Aydın, A. (2006). Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology & Fertility of Soils, 42(4), 350–357.

    Article  CAS  Google Scholar 

  • Chen, X., Li, Z., Liu, M., Jiang, C., & Che, Y. (2015). Microbial community and functional diversity associated with different aggregate fractions of a paddy soil fertilized with organic manure and/or NPK fertilizer for 20 years. Journal of Soils and Sediments, 15(2), 292–301.

    Article  CAS  Google Scholar 

  • Cheng, C., Shang-Guan, W., He, L., & Sheng, X. (2020). Effect of exopolysaccharide-producing bacteria on water-stable macro-aggregate formation in soil. Geomicrobiology Journal, 37(8), 738–745.

    Article  CAS  Google Scholar 

  • Compant, S., Saikkonen, K., Mitter, B., Campisano, A., & Blanco, J. M. (2016). Soil, plants and endophytes. Plant and Soil, 405, 1–11.

    Article  CAS  Google Scholar 

  • Costa, O. Y., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9, 1636.

    Article  Google Scholar 

  • Crawford, J. W., Deacon, L., Grinev, D., Harris, J. A., Ritz, K., Singh, B. K., & Young, I. (2012). Microbial diversity affects self-organization of the soil–microbe system with consequences for function. Journal of the Royal Society Interface, 9(71), 1302–1310.

    Article  Google Scholar 

  • Curá, J. A., Franz, D. R., Filosofía, J. E., Balestrasse, K. B., & Burgueño, L. E. (2017). Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms, 5(3), 41.

  • Dane, J. H., & Hopmans, J. W. (2002). Laboratory determination of water retention. In J. H. Danea & Topp G. C. (Eds.) Methods of Soil Analysis. (Part 4, pp. 671–720) Physical Methods. Soil Science Society of America Inc., Madison, WI, USA.

  • Dar, A., Zahir, Z. A., Asghar, H. N., & Ahmad, R. (2020). Preliminary screening of rhizobacteria for biocontrol of little seed canary grass (Phalaris minor Retz.) and wild oat (Avena fatua L.) in wheat. Canadian Journal of Microbiology, 66(5), 368–376.

  • Davey, M. E., & O’toole, G. A. (2000). Microbial biofilms: From ecology to molecular genetics. Microbiology & Molecular Biology Reviews, 64(4), 847–867.

    Article  CAS  Google Scholar 

  • Daynes, C. N., Field, D. J., Saleeba, J. A., Cole, M. A., & McGee, P. A. (2013). Development and stabilisation of soil structure via interactions between organic matter, arbuscular mycorrhizal fungi and plant roots. Soil Biology & Biochemistry, 57, 683–694.

    Article  CAS  Google Scholar 

  • Deka, P., Goswami, G., Das, P., Gautom, T., Chowdhury, N., Boro, R. C., & Barooah, M. (2019). Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Molecular Biology Reports, 46(1), 1079–1091.

    Article  CAS  Google Scholar 

  • Dexter, A. R., & Czyż, E. A. (2007). Applications of S-theory in the study of soil physical degradation and its consequences. Land Degradation & Development, 18(4), 369–381.

    Article  Google Scholar 

  • Dwyer, L. M., & Stewart, D. W. (1986). Leaf area development in field-grown maize 1. Agronomy Journal, 78(2), 334–343.

    Article  Google Scholar 

  • Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects a review. Journal of Soil Science & Plant Nutrition, 17(4), 897–911.

    Article  CAS  Google Scholar 

  • Fahad, S., Saud, S., Akhter, A., Bajwa, A. A., Hassan, S., Battaglia, M., Adnan, M., Wahid, F., Datta, R., Babur, E., & Danish, S. (2021). Bio-based integrated pest management in rice: An agro-ecosystems friendly approach for agricultural sustainability. Journal of the Saudi Society of Agricultural Sciences, 20(2), 94–102.

    Article  Google Scholar 

  • Fasciglione, G., Casanovas, E. M., Quillehauquy, V., Yommi, A. K., Goñi, M. G., Roura, S. I., & Barassi, C. A. (2015). Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae, 195, 154–162.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder J. W. (1986). Particle-size analysis. In A. Klute (Eds.) Methods of soil analysis Part 1. Physical and Mineralogical Methods Agronomy Monograph No. 9, (2nd Ed., pp. 383–411) Madison, WI, USA.

  • Hallett, P. D., Feeney, D. S., Bengough, A. G., Rillig, M. C., Scrimgeour, C. M., & Young, I. M. (2009). Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant and Soil, 314(1), 183–196.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1962). Soil chemical analysis. Constable and co. Ltd. London, UK. p. 496.

  • Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One, 14(9), e0222302.

  • Khan, Z., Rho, H., Firrincieli, A., Hung, S. H., Luna, V., Masciarelli, O., Kim, S. H., & Doty, S. L. (2016). Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6, 38–47.

    Article  Google Scholar 

  • Kohler, J., Caravaca, F., & Roldán, A. (2010). An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biology & Biochemistry, 42(3), 429–434.

    Article  CAS  Google Scholar 

  • Kong, A. Y., Scow, K. M., Córdova-Kreylos, A. L., Holmes, W. E., & Six, J. (2011). Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biology & Biochemistry, 43(1), 20–30.

    Article  CAS  Google Scholar 

  • Lehmann, A., & Rillig, M. C. (2015). Understanding mechanisms of soil biota involvement in soil aggregation: A way forward with saprobic fungi? Soil Biology & Biochemistry, 88, 298–302.

    Article  CAS  Google Scholar 

  • Meena, K. K., Sorty, A. M., Bitla, U. M., Choudhary, K., Gupta, P., Pareek, A., Singh, D. P., Prabha, R., Sahu, P. K., Gupta, V. K., & Minhas, P. S. (2017). Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies. Frontiers in Plant Science, 8, 172.

    Article  Google Scholar 

  • Moncada, M. P., Ball, B. C., Gabriels, D., Lobo, D., & Cornelis, W. M. (2015). Evaluation of soil physical quality index S for some tropical and temperate medium-textured soils. Soil Science Society of America Journal, 79(1), 9–19.

    Article  CAS  Google Scholar 

  • Montogomery, D. C. (2013). Design and analysis of experiments. (8th Ed. Pp 98–100) John Wiley and Sons Inc, Newyork USA.

  • Murgese, P., Santamaria, P., Leoni, B., & Crecchio, C. (2020). Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere (Cucumis melo L.). Journal of Soil Science & Plant Nutrition, 20, 784–793.

    Article  CAS  Google Scholar 

  • Naveed, M., Mitter, B., Reichenauer, T. G., Wieczorek, K., & Sessitsch, A. (2014). Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental and Experimental Botany, 97, 30–39.

    Article  CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In Sparks, D.L., A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soluanpour, M.A. Tabatabai, C.T. Johnston and M.E. Sumner (Eds.) Methods of soil analysis part 3: chemical methods (pp 961–1010). Soil Science Society of America, Inc. and American Society of Agronomy, Inc., Madison, Wisconsin, USA.

  • Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: Functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002–14015.

    Article  CAS  Google Scholar 

  • Osorio Vega, N. W. (2007). A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Revista Facultad Nacional De Agronomía-Medellín, 60(1), 3621–3643.

    Google Scholar 

  • Paredes, S. H., & Lebeis, S. L. (2016). Giving back to the community: Microbial mechanisms of plant–soil interactions. Functional Ecology, 30(7), 1043–1052.

    Article  Google Scholar 

  • Peng, X., Horn, R., & Hallett, P. (2015). Soil structure and its functions in ecosystems: Phase matter & scale matter. Soil & Tillage Research, 146(Part A), 1–3.

  • Rosenberg, E., & Rosenberg, I. Z. (2016). Microbes drive evolution of animals and plants: The hologenome concept. Mbio, 7(2), e01395-e1415.

    Article  CAS  Google Scholar 

  • Han, W. Q., Chang, C. W., & Zettl, A. (2004). Encapsulation of one-dimensional potassium halide crystals within BN nanotubes. Nano Letters, 4(7), 1355–1357.

    Article  CAS  Google Scholar 

  • Rout, M. E., & Callaway, R. M. (2012). Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere.’ Annals of Botany, 110(2), 213–222.

    Article  Google Scholar 

  • Ryan, J., Estefan, G. & Rashid, A. (2001). Soil and plant analysis laboratory manual, 2nd ed. International Center for Agriculture in Dry Areas (ICARDA), Syria.

  • Shahzad, H. (2020). Rhizobacterial inoculation to quantify structural stability and carbon distribution in aggregates of sandy clay loam soil. Eurasian Soil Science, 53, 675–685.

    Article  Google Scholar 

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131.

    Article  CAS  Google Scholar 

  • Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 70(2), 555–569.

    Article  CAS  Google Scholar 

  • Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A. C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8, 49.

    Article  Google Scholar 

  • Turan, M., Ataoğlu, N., & Şahιn, F. (2006). Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. Journal of Sustainable Agriculture, 28(3), 99–108.

    Article  Google Scholar 

  • Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214–222.

    Article  CAS  Google Scholar 

  • Vivas, A., Azcon, R., Biro, B., Barea, J. M., & Ruiz-Lozano, J. M. (2003). Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of Microbiology, 49, 577–588.

  • Wang, T., Wedin, D., & Zlotnik, V. A. (2009). Field evidence of a negative correlation between saturated hydraulic conductivity and soil carbon in a sandy soil. Water Resources Research, 45(7).

  • Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035-1059.

  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4.

    Article  CAS  Google Scholar 

  • Yazdani, M., Bahmanyar, M. A., Pirdashti, H., & Esmaili, M. A. (2009). Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.). World Academy of Science, Engineering & Technology, 49, 90–92.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledged Mr. Haroon Shahzad and the farm staff for helping in the conduction of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maqshoof Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, A., Zahir, Z.A., Iqbal, M. et al. Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environ Monit Assess 193, 515 (2021). https://doi.org/10.1007/s10661-021-09286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09286-6

Keywords

Navigation