Skip to main content

Advertisement

Log in

Mechanical Characterization of Bio-epoxy Green Composites Derived from Sodium Bicarbonate Treated Punica Granatum Short Fiber Agro-waste

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Investigations into green materials owing to the growing environmental concerns have become one of the hot topics for the scientific community. The present work aims to fabricate and investigate the mechanical and physical properties of short Punica granatum fiber (SPGF) reinforced bio epoxy (BE) biocomposites. The bio epoxy has been derived from cashew-nut shell oil. The composites are fabricated using different wt% of SPGF (10%, 20%, 30%, and 40%) that are chemically treated using 10 wt% sodium bicarbonate solution for different treatment duration i.e., 1 day, 5 days and 10 days. It has been revealed through the chemical characterization approach of X-ray diffraction (XRD) methodology that the aforementioned eco-friendly chemical treatment process doesn’t promote the transformation of the treated SPGFs to cellulose II from cellulose I. Thermogravimetric (TGA) analysis reveals degradation of hemicellulose as well as the pectin content of the SPGFs. The effect of the chemical treatment with varied treatment duration on the mechanical properties as such tensile, flexural, and impact properties of fabricated green composites are investigated. The physical properties such, water absorption, moisture content, and thickness swelling are also investigated. The mechanical properties of the fabricated composites weren’t affected by the alkaline treatment. However, better physical properties and mechanical properties were revealed for the composites fabricated using 5 days treated Punica granatum short fibers in comparison to other dissolution conditions. The alkaline treatment, therefore, proves to be effective in enhancing the properties of the composite specimen. The treatment process takes care of the environmental concerns as it is benign to the environment when disposed of in comparison to the strong alkaline treatment solutions. Moreover, the developed green composites promote sustainable and cleaner processing in the world of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jayaseelan C, Padmanabhan P, Athijayamani A, Ramanathan K (2017) Comparative investigation of mechanical properties of epoxy composites reinforced with short fibers, macro particles, and micro particles. BioResources 12(2):2864–2871

    CAS  Google Scholar 

  2. Bisaria H, Gupta MK, Shandilya PA, Srivastava RK (2015) Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater Today 2(4–5):1193–1199

    Google Scholar 

  3. Hassan T, Jamshaid H, Mishra R, Khan MQ, Petru M, Novak J, Choteborsky R, Acoustic HM (2020) Mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers 12(3):654–673

    CAS  PubMed Central  Google Scholar 

  4. Constante A, Pillay S (2018) Compression molding of algae fiber and epoxy composites: modeling of elastic modulus. J Reinf Plast Compos 37(19):1202–1216

    CAS  Google Scholar 

  5. Alshammari BA, Alotaibi MD, Alothman OY, Sanjay MR, Kian LK, Almutairi Z, Jawaid M (2019) A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. J Polym Environ 27(11):2334–2340

    CAS  Google Scholar 

  6. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R (2013) Characterization of new cellulose sansevieria ehrenbergii fibers for polymer composites. Compos Interfaces 20(8):575–593

    CAS  Google Scholar 

  7. Meredith J, Coles SR, Powe R, Collings E, Cozien-Cazuc S, Weager B, Müssig J, Kirwan K (2013) On the static and dynamic properties of flax and Cordenka epoxy composites. Compos Sci Technol 80:31–38

    CAS  Google Scholar 

  8. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr Polym 106:77–83

    CAS  PubMed  Google Scholar 

  9. Fiore V, Scalici T, Vitale G, Valenza A (2014) Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater Des 57:456–464

    CAS  Google Scholar 

  10. Fiore V, Botta L, Scaffaro R, Valenza A, Pirrotta A (2014) PLA based biocomposites reinforced with Arundo donax fillers. Compos Sci Technol 105:110–117

    CAS  Google Scholar 

  11. Cordeiro EP, Pita VJ, Soares BG (2017) Epoxy–fiber of peach palm trees composites: the effect of composition and fiber modification on mechanical and dynamic mechanical properties. J Polym Environ 25(3):913–924

    CAS  Google Scholar 

  12. Manimaran P, Saravanan SP, Sanjay MR, Jawaid M, Siengchin S, Fiore V (2020) New lignocellulosic aristida adscensionis fibers as novel reinforcement for composite materials: extraction, characterization and weibull distribution analysis. J Polym Environ 28(3):803–811

    CAS  Google Scholar 

  13. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70(1):116–122

    Google Scholar 

  14. Mathew L, Joseph KU, Joseph R (2007) Isora fibre: Morphology, chemical composition, surface modification, physical, mechanical and thermal properties–A potential natural reinforcement. J Nat Fibers 3(4):13–27

    Google Scholar 

  15. da Silva SR, de Souza AA, De Paoli MA, de Souza CM (2010) Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: preparation and characterization. Compos A 41(9):1123–1129

    Google Scholar 

  16. Mathew G, Rhee JM, Hwang BS, Nah C (2007) Cure behavior of epoxy resin containing castor oil and cashew nut shell liquid and its derivative. J Appl Polym Sci 106(1):178–184

    CAS  Google Scholar 

  17. Kadem S, Irinislimane R, Belhaneche-Bensemra N (2018) Novel biocomposites based on sunflower oil and alfa fibers as renewable resources. J Polym Environ 26(7):3086–3096

    CAS  Google Scholar 

  18. Fernandes FC, Kirwan K, Wilson PR, Coles SR (2019) Sustainable alternative composites using waste vegetable oil based resins. J Polym Environ 27(11):2464–2477

    CAS  Google Scholar 

  19. Fernandes FC, Kirwan K, Wilson PR, Coles SR (2018) Optimisation of waste vegetable oil-based thermoset polymers. Green Mater 6(1):38–46

    Google Scholar 

  20. Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B 42(6):1648–1656

    Google Scholar 

  21. Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 1980–2015(52):251–257

    Google Scholar 

  22. Kumar SS, Duraibabu DA, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69

    Google Scholar 

  23. Fiore V, Di Bella G, Valenza A (2015) The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos B 68:14–21

    CAS  Google Scholar 

  24. Kocaman S, Ahmetli G (2020) Effects of various methods of chemical modification of lignocellulose hazelnut shell waste on a newly synthesized bio-based epoxy composite. J Polym Environ 28:1–14

    Google Scholar 

  25. Thakur VK, Singha AS (2010) Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym-Plast Technol Eng 49(7):694–700

    CAS  Google Scholar 

  26. Ragoubi M, Bienaimé D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31(2):344–349

    CAS  Google Scholar 

  27. Asim M, Jawaid M, Abdan K, Ishak MR (2018) The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. J Polym Environ 26(4):1520–1527

    CAS  Google Scholar 

  28. Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos B 45(1):565–572

    CAS  Google Scholar 

  29. Yuan X, Jayaraman K, Bhattacharyya D (2002) Plasma treatment of sisal fibres and its effects on tensile strength and interfacial bonding. J Adhes Sci Technol 16(6):703–727

    CAS  Google Scholar 

  30. Fiore V, Scalici T, Nicoletti F, Vitale G, Prestipino M, Valenza A (2016) A new eco-friendly chemical treatment of natural fibres: effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos B 85:150–160

    CAS  Google Scholar 

  31. Mahjoub R, Yatim JM, Sam ARM, Hashemi SH (2014) Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater 55:103–113

    Google Scholar 

  32. Edeerozey AM, Akil HM, Azhar AB, Ariffin MZ (2007) Chemical modification of kenaf fibers. Mater Lett 61(10):2023–2025

    CAS  Google Scholar 

  33. Sotenko M, Coles SR, McEwen I, DeCampos R, Barker G, Kirwan K (2016) Biodegradation as natural fibre pre-treatment in composite manufacturing. Green Mater 4(1):8–17

    Google Scholar 

  34. Cai M, Takagi H, Nakagaito AN, Katoh M, Ueki T, Waterhouse GI, Li Y (2015) Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crops Prod 65:27–35

    CAS  Google Scholar 

  35. Sghaier AEOB, Chaabouni Y, Msahli S, Sakli F (2012) Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind Crops Prod 36(1):257–266

    Google Scholar 

  36. Dos Santos JC, Siqueira RL, Vieira LMG, Freire RTS, Mano V, Panzera TH (2018) Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polym Test 67:533–544

    Google Scholar 

  37. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9(6):735–739

    CAS  Google Scholar 

  38. Rosa MF, Chiou BS, Medeiros ES, Wood DF, Williams TG, Mattoso LH, Orts WJ, Imam SH (2009) Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresour Technol 100(21):5196–5202

    CAS  PubMed  Google Scholar 

  39. Silva GG, De Souza DA, Machado JC, Hourston DJ (2000) Mechanical and thermal characterization of native Brazilian coir fiber. J Appl Polym Sci 76(7):1197–1206

    CAS  Google Scholar 

  40. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92

    CAS  Google Scholar 

  41. Varma IK, Krishnan SA, Krishnamoorthy S (1988) Effect of chemical treatment on thermal behavior of jute fibers. Text Res J 58(8):486–494

    CAS  Google Scholar 

  42. Oumer AN, Bachtiar D (2014) Modeling and experimental validation of tensile properties of sugar palm fiber reinforced high impact polystyrene composites. Fibers Polym 15(2):334–339

    CAS  Google Scholar 

  43. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J (2017) Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm starch/agar hybrid composites. Int J Biol Macromol 97:606–615

    CAS  PubMed  Google Scholar 

  44. Ramanaiah K, Prasad AR, Reddy KHC (2012) Effect of fiber loading on mechanical properties of borassus seed shoot fiber reinforced polyester composites. J Mater Environ Sci 3(2):374–378

    CAS  Google Scholar 

  45. Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    CAS  Google Scholar 

  46. Ilyas RA, Sapuan SM, Ishak MR, Zainudin ES (2017) Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources 12(4):8734–8754

    CAS  Google Scholar 

  47. Munoz E, García-Manrique JA (2015) Water absorption behaviour and its effect on the mechanical properties of flax fibre reinforced bioepoxy composites. Int J Polym Sci 2015:10

    Google Scholar 

  48. Ramírez MGL, Satyanarayana KG, Iwakiri S, de Muniz GB, Tanobe V, Flores-Sahagun TS (2011) Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydr Polym 86(4):1712–1722

    Google Scholar 

  49. Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Cassava/sugar palm fiber reinforced cassava starch hybrid composites: physical, thermal and structural properties. Int J Biol Macromol 101:75–83

    CAS  PubMed  Google Scholar 

  50. Jawaid MHPS, Khalil HA, Khanam PN, Bakar AA (2011) Hybrid composites made from oil palm empty fruit bunches/jute fibres: water absorption, thickness swelling and density behaviours. J Polym Environ 19(1):106–109

    CAS  Google Scholar 

  51. Ashori A, Sheshmani S (2010) Hybrid composites made from recycled materials: moisture absorption and thickness swelling behavior. Bioresour Technol 101(12):4717–4720

    CAS  PubMed  Google Scholar 

  52. Nezhad HY, Thakur VK (2018) Effect of morphological changes due to increasing carbon nanoparticles content on the quasi-static mechanical response of epoxy resin. Polymers 10(10):1106

    PubMed Central  Google Scholar 

  53. Yan L, Chouw N, Huang L, Kasal B (2016) Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr Build Mater 112:168–182

    CAS  Google Scholar 

  54. De Albuquerque AC, Joseph K, de Carvalho LH, d'Almeida JRM (2000) Effect of wettability and ageing conditions on the physical and mechanical properties of uniaxially oriented jute-roving-reinforced polyester composites. Compos Sci Technol 60(6):833–844

    Google Scholar 

  55. Mukherjee A, Ganguly PK, Sur D (1993) Structural mechanics of jute: the effects of hemicellulose or lignin removal. J Text Inst 84(3):348–353

    CAS  Google Scholar 

  56. Reddy KO, Maheswari CU, Shukla M, Song JI, Rajulu AV (2013) Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Compos B 44(1):433–438

    Google Scholar 

  57. Wang YS, Koo WM, Kim HD (2003) Preparation and properties of new regenerated cellulose fibers. Text Res J 73(11):998–1004

    CAS  Google Scholar 

  58. Vickers NJ (2017) Animal communication: when i’m calling you, will you answer too? Curr Biol 27(14):R713–R715

    CAS  PubMed  Google Scholar 

  59. Prakash V, Bera T, Pradhan S, Acharya SK (2020) Potential of Syngonanthus nitens fiber as a reinforcement in epoxy composite and its mechanical characterization. Cellul J Indian Acad Wood Sci 67:1–4

    Google Scholar 

  60. Kumar R, Bhowmik S (2019) Elucidating the coir particle filler interaction in epoxy polymer composites at low strain rate. Fibers Polym 20(2):428–439

    CAS  Google Scholar 

  61. Kumar R, Kumar K, Bhowmik S (2018) Assessment and response of treated Cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. J Polym Environ 26(6):2522–2535

    CAS  Google Scholar 

  62. Kumar R, Bhowmik S, Kumar K, Davim JP (2019) Perspective on the mechanical response of pineapple leaf filler/toughened epoxy composites under diverse constraints. Polym Bull 77:1–25

    CAS  Google Scholar 

  63. Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32(3):308–315

    CAS  Google Scholar 

  64. Valášek P, Ruggiero A, Müller M (2017) Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Compos B 1(122):79–88

    Google Scholar 

  65. Abu-Dalo M, Jaradat A, Albiss BA, Al-Rawashdeh NA (2017) Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection. J Environ Chem Eng 7(5):103370

    Google Scholar 

Download references

Funding

No funding was received to perform the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Ethics declarations

Conflict of interest

All the authors of the present work has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zindani, D., Kumar, S., Maity, S.R. et al. Mechanical Characterization of Bio-epoxy Green Composites Derived from Sodium Bicarbonate Treated Punica Granatum Short Fiber Agro-waste. J Polym Environ 29, 143–155 (2021). https://doi.org/10.1007/s10924-020-01868-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01868-8

Keywords

Navigation