Skip to main content
Log in

The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The volatile organic compounds (VOCs) produced by soil microbes modulated plant growth and development. Floccularia luteovirens, an edible mushroom, is beneficial to the growth of alpine meadow plants on the Qinghai-Tibet Plateau. We aimed to elucidate the physiological and molecular mechanisms underlying the mushroom fungal VOC-mediated plant growth and development.

Methods

Here, we investigated the effects of VOCs produced by F. luteovirens on the root system development and seedling growth by integrating physiology, genetics, transcriptome and metabolome analysis using 1/2 MS medium-grown Arabidopsis thaliana seedlings.

Results

Treatment with F. luteovirens VOCs reduce primary root growth by aggravating auxin accumulation through the repression of the abundance of auxin efflux carrier PIN-FORMED 2 (PIN2) protein, whereas it increases the lateral root number of A. thaliana seedlings. In addition to modulating root system architecture, treatment with F. luteovirens VOCs markedly increased aboveground growth. The transcriptome and metabolome analyses further supported the notion that F. luteovirens VOCs modulate plant growth and development through the induction of carbon/nitrogen metabolism and antioxidant defense while repressing several secondary metabolism and amino acid catabolism pathways.

Conclusions

These results suggested that application of F. luteovirens VOCs promote growth by inducing changes in root system architecture through auxin pathway and regulating metabolism in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bac-Molenaar JA, Fradin EF, Rienstra JA, Vreugdenhil D, Keurentjes JJB (2015) GWA mapping of anthocyanin accumulation reveals balancing selection of MYB90 in Arabidopsis thaliana. PLoS One 10:e0143212

    PubMed  PubMed Central  Google Scholar 

  • Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80:758–771

    CAS  PubMed  Google Scholar 

  • Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    CAS  PubMed  Google Scholar 

  • Bennett JW, Hung R, Lee S, Padhi S (2013) Fungal and bacterial volatile organic compounds: an overview and their role as ecological signaling agents. In: Hock B (ed) The Mycota IX fungal interactions. Springer, Berlin, pp 373–393

    Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    CAS  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen VA, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres BJG (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    CAS  PubMed  Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    CAS  PubMed  Google Scholar 

  • Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G (2013) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol Rep 31:87–97

    CAS  Google Scholar 

  • Choi J, Abe N, Tanaka H, Fushimi K, Nishina Y, Morita A et al (2010a) Plant-growth regulator, imidazole-4-carboxamide, produced by the fairy ring forming fungus Lepista sordida. J Agric Food Chem 58:9956–9959

    CAS  PubMed  Google Scholar 

  • Choi JH, Fushimi K, Abe N, Tanaka H, Maeda S, Morita A, Hara M, Motohashi R, Matsunaga J, Eguchi Y, Ishigaki N, Hashizume D, Koshino H, Kawagishi H (2010b) Disclosure of the “fairy” of fairy-ring-forming fungus Lepista sordida. ChemBioChem 11:1373–1377

    CAS  PubMed  Google Scholar 

  • Choi J, Ohnishi T, Yamakawa Y, Takeda S, Sekiguchi S, Maruyama W et al (2014) The source of “fairy rings”: 2-Azahypoxanthine and its metabolite found in a novel purine metabolic pathway in plants. Angew Chem 53:1552–1555

    CAS  Google Scholar 

  • Choi J, Wu J, Sawada A, Takeda S, Takemura H, Yogosawa K et al (2018) N-Glucosides of fairy chemicals, 2-Azahypoxanthine and 2-Aza-8-oxohypoxanthine, in Rice. Org Lett 20:312–314

    CAS  PubMed  Google Scholar 

  • Colon-Carmona A, You R, Haimovitch-Gal T, Doerner P (1999) Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20:503–508

    CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    CAS  PubMed  Google Scholar 

  • Dinneny JR, Benfey PN (2008) Plant stem cell niches: standing the test of time. Cell 132:553–557

    CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Claeys H, Van Vlierberghe K, Matsui M, Inzé D (2015) The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 antagonistically regulate mannitol-induced growth inhibition in Arabidopsis. Plant Physiol 169:166–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimianmotlagh S, Ribone PA, Thirumalaikumar VP, Allu AD, Chan RL, Muellerroeber B, Balazadeh S (2017) JUNGBRUNNEN1 confers drought tolerance downstream of the HD-zip I transcription factor AtHB13. Front Plant Sci 8:2118

    Google Scholar 

  • Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5:39

    PubMed  PubMed Central  Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    CAS  PubMed  Google Scholar 

  • Felten J, Kohler A, Morin E, Bhalerao RP, Palme K, Martin F, Ditengou FA, Legue V (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    CAS  PubMed  Google Scholar 

  • Gallagher SR (1992) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, New York

    Google Scholar 

  • Gao A, Zhang J, Zhang W (2017) Evolution of RAD-and DIV-like genes in plants. Int J Mol Sci 18:1961

    PubMed Central  Google Scholar 

  • Gigolashvili T, Engqvist M, Yatusevich R, Müller C, Flügge UI (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol 177:627–642

    CAS  PubMed  Google Scholar 

  • Gorham SR, Weiner AI, Yamadi M, Krogan NT (2018) HISTONE DEACETYLASE 19 and the flowering time gene FD maintain reproductive meristem identity in an age-dependent manner. J Exp Bot 69:4757–4771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006) GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19:924–930

    CAS  PubMed  Google Scholar 

  • He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1–5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196

    CAS  PubMed  Google Scholar 

  • Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405

    CAS  PubMed  Google Scholar 

  • Jan A, Yang G, Nakamura H, Ichikawa H, Kitano H, Matsuoka M, Matsumoto H, Komatsu S (2004) Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice. Plant Physiol 136:3670–3681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Kawagishi H (2018) Fairy chemicals - a candidate for a new family of plant hormones and possibility of practical use in agriculture. Biosci Biotechnol Biochem 82:752–758

    CAS  PubMed  Google Scholar 

  • Kawagishi H (2019) Are fairy chemicals a new family of plant hormones? Proc Jpn Acad B Phys 95:29–38

    CAS  Google Scholar 

  • Kawamoto N, Sasabe M, Endo M, Machida Y, Araki T (2015) Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Sci Rep 5:8341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2007) Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana. J Gen Plant Pathol 73:35–37

    CAS  Google Scholar 

  • Kumar KS (2018) Manipulation of genes involved in secondary Cell Wall development during wood formation in poplar (Doctoral dissertation, Michigan Technological University)

  • Li C, Zhou Y, Fan LM (2015) A novel repressor of floral transition, MEE3, an abiotic stress regulated protein, functions as an activator of FLC by binding to its promoter in Arabidopsis. Environ Exp Bot 113:1–10

    Google Scholar 

  • Li B, Gao Z, Liu X, Sun D, Tang W (2019) Transcriptional profiling reveals a time-of-day-specific role of REVEILLE 4/8 in regulating the first wave of heat shock–induced gene expression in Arabidopsis. Plant Cell 31:2353–2369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165:1424–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang R, Zhang P, Chen Q, Luo Q, Zhu Y, Xu J (2016) The nitrification inhibitor methyl 3-(4-hydroxyphenyl) propionate modulates root development by interfering with auxin signaling via the NO/ROS pathway. Plant Physiol 171:1686–1703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14:589–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng L, Sun X, Li F, Liu H, Feng Z, Zhu J (2010) Modification of flowers and leaves in cockscomb (Celosia cristata) ectopically expressing Arabidopsis ASYMMERTIC LEAVES2-LIKE38 (ASL38/LBD41) gene. Acta Physiol Plant 32:315–324

    CAS  Google Scholar 

  • Pang Z, Chong J, Li S, Xia J (2020) MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics. Metabolites 10:186

  • Patel DK, Archana G, Kumar GN (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56:168–174

    CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: Endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    CAS  PubMed  Google Scholar 

  • Rippin M, Pichrtová M, Arc E, Kranner I, Becker B, Holzinger A (2019) Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a Zygnema green algal mat from Svalbard (high Arctic). Environ Microbiol 21:4283–4299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders M, Glenn AE, Kohn LM (2010) Exploring the evolutionary ecology of fungal endophytes in agricultural systems: using functional traits to reveal mechanisms in community processes. Evol Appl 3:525–537

    PubMed  PubMed Central  Google Scholar 

  • Sønderby IE, Burow M, Rowe HC, Kliebenstein DJ, Halkier BA (2010) A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis. Plant Physiol 153:348–363

    PubMed  PubMed Central  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    CAS  PubMed  Google Scholar 

  • Sun LL, Wang RT, Ju Q, Xu J (2020) Physiological, metabolic and transcriptomic analyses reveal the responses of Arabidopsis seedlings to carbon Nanohorns. Environ Sci Technol 54:4409–4420

    PubMed  Google Scholar 

  • Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, Tsurumi S, Moore I, Napier R, Kerr ID, Bennett MJ (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16:3069–3083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Sandt VS, Suslov D, Verbelen JP, Vissenberg K (2007) Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot 100:1467–1473

    PubMed  PubMed Central  Google Scholar 

  • Wan J, Zhang P, Sun L, Li S, Wang R, Zhou H, Wang W, Xu J (2018a) Involvement of reactive oxygen species and auxin in serotonin-induced inhibition of primary root elongation. J Plant Physiol 229:89–99

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang P, Wang R, Sun L, Ju Q, Xu J (2018b) Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis. BMC Plant Biol 18:362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhang S, Su L, Liu X, Hao Y (2013) A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11. PLoS One 8(2)

  • Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI et al (2012) JUNGBRUNNEN1, a reactive oxygen species–responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xing R, Yan HY, Gao QB, Zhang FQ, Wang JL, Chen SL (2018) Microbial communities inhabiting the fairy ring of Floccularia luteovirens and isolation of potential mycorrhiza helper bacteria. J Basic Microbiol 58:554–563

    CAS  PubMed  Google Scholar 

  • Yang C, Li J, Liu N, Zhang Y (2019) Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. Plant Soil 441:499–510

    CAS  Google Scholar 

  • Yang JH, Lee K, Du Q, Yang S, Yuan B, Qi L, Wang H (2020) A membrane-associated NAC domain transcription factor XVP interacts with TDIF co-receptor and regulates vascular meristem activity. New Phytol 226:59–74

    CAS  PubMed  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778

    CAS  PubMed  Google Scholar 

  • Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CM (2013) Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol 162:304–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Wang R, Ju Q, Li W, Tran LSP, Xu J (2019) The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation. Plant Physiol 180:529–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    CAS  PubMed  Google Scholar 

  • Zhu D, Che Y, Xiao P, Hou L, Guo Y, Liu X (2018) Functional analysis of a grape WRKY30 gene in drought resistance. Plant Cell Tiss Org 132:449–459

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Key Research and Development Program of China (2016YFC0501901), the Basic Research Program of Qinghai Province (2019-ZJ-7033), Qinghai innovation platform construction project (2017-ZJ-Y20), the China National Natural Sciences Foundation (31772383, 31960268, 41761107), the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0302) and Key Special Foundation/Project of Science and Technology Department of Qinghai Province (2019-SF-A12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huakun Zhou, Wenying Wang or Jin Xu.

Additional information

Responsible Editor: Janusz J. Zwiazek.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2098 kb)

ESM 2

(XLSX 12 kb)

ESM 3

(XLSX 29 kb)

ESM 4

(XLSX 11 kb)

ESM 5

(XLSX 14 kb)

ESM 6

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Cao, M., Liu, F. et al. The volatile organic compounds of Floccularia luteovirens modulate plant growth and metabolism in Arabidopsis thaliana. Plant Soil 456, 207–221 (2020). https://doi.org/10.1007/s11104-020-04709-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04709-8

Keywords

Navigation