Skip to main content
Log in

Genetic variation in physiological responses of mungbeans (Vigna radiata (L.) Wilczek) to drought

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Mungbean is a relatively drought tolerant leguminous crop with a short life cycle. Using leaf water loss (LWL) as a screen for drought tolerance, two mungbean genotypes exhibiting more than two–fold variation in leaf water loss were explored for the genetic variation in their physiological and molecular responses to drought. Efficient stomatal regulation together with better photosynthetic capacity constituted an important trait combination for drought adaptation in water saving low LWL genotype. The stomatal closure under drought was accompanied with a concomitant down-regulation of farnesyl transferase gene. However, cooler canopy temperature, a well branched root system coupled with a relatively higher proline accumulation in water spending high LWL genotype constituted another set of adaptive traits operating when exposed to deficit soil moisture conditions. We report drought induced down-regulation of proline dehydrogenase and the presence of 118 base pair intron in this gene. The high seed yield of low LWL genotype despite a hotter canopy might be attributed to higher net assimilation and quantum yield recorded under drought in this genotype. Thus, these interlinked features contribute to adaptive mechanisms of mungbeans which is widely grown in harsh environments exposed to drought and high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LWL:

Leaf water loss

ABA:

Abscisic acid

FT:

Farnesyl transferase

bZIP:

basic leucine zipper

RLWC:

Relative leaf water content

P5CS:

Pyrroline 5- Carboxylate synthetase

PDH:

Proline dehydrogenase

PEG:

Polyethylene glycol

qPCR:

quantitative PCR

MES buffer:

2-(N-Morpholino) ethanesulfonic acid

RT-PCR:

Reverse transcription polymerase chain reaction

BLAST:

Basic Local Alignment Search Tool

Chl:

Chlorophyll

cDNA:

complementary DNA

References

  • Aguilar ML, Espadas FL, Coello J, Maust BE, Trejo C, Robert ML, Santamaría JM (2000) The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. J Exp Bot 51:1861–1866

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Gallegos JAA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Komatsuda T, Ma JF et al (2011) An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice. P Natl Acad Sci Usa 108:12354–12359

    Article  CAS  Google Scholar 

  • Cui Y, Tian Z, Zhang X, Muhammad A, Han H, Jiang D, Cao W, Dai T (2015) Effect of water deficit during vegetative growth periods on post-anthesis photosynthetic capacity and grain yield in winter wheat (Triticum aestivum L.). Acta Physiol Plant 37:196

    Article  CAS  Google Scholar 

  • Dhanda SS, Sethi GS (2002) Tolerance to drought stress among selected Indian wheat cultivars. J AGR SCI 139:319–326

    Article  Google Scholar 

  • Funck D, Eckard S, Müller G (2010) Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol 10:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran LS (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. P Natl Acad Sci Usa 111:851–856

    Article  CAS  Google Scholar 

  • Haleyl SD, Quick JS, Morgans JA (1993) Excised-leaf water status evaluation and associations in field-grown winter wheat. Can J Plant Sci 73:55–63

    Article  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. P Natl Acad Sci Usa 103:12987–12992

    Article  CAS  Google Scholar 

  • Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nature Comm 5:5443. doi:10.1038/ncomms6443

    Article  CAS  Google Scholar 

  • Kawamitsu Y, Driscoll T, Boyer JS (2000) Photosynthesis during desiccation in an intertidal alga and a land plant. Plant Cell Physiol 41:344–353

    Article  CAS  PubMed  Google Scholar 

  • Kooyers NJ, Greenlee AB, Colicchio JM, Oh M, Blackman BK (2015) Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. New Phytol 206:152–165

    Article  PubMed  Google Scholar 

  • Lopes MS, Reynolds MP (2010) Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Funct Plant Biol 37:147–156

    Article  Google Scholar 

  • Luo X, Bai X, Sun X, Zhu D, Liu B, Ji W, Cai H, Cao L, Wu J, Hu M, Liu X, Tang L, Zhu Y (2013) Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling. J Exp Bot 64:2155–2169

    Article  CAS  PubMed  Google Scholar 

  • Moe KT, Chung JW, Cho YI, Moon JK, Ku JH, Jung JK, Lee J, Park YJ (2011) Sequence information on simple sequence repeats and single nucleotide polymorphisms through transcriptome analysis of mungbean. J Integr Plant Biol 53:63–73

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan S, Mohan A, Gill KS, Prasad PV (2014) Variability of root traits in spring wheat germplasm. PLoS One 9(6):e100317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes C, Araújo SS, Silva JM, Fevereiro MPS, Silva AB (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296

    Article  CAS  Google Scholar 

  • Pinto RS, Reynolds MP (2015) Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor Appl Genet 128:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanjulu S, Sudhakar C (1997) Drought tolerance is partly related to amino acid accumulation and ammonia assimilation: a comparative study in two mulberry genotypes differing in drought sensitivity. J Plant Physiol 150:345–350

    Article  CAS  Google Scholar 

  • Rusconi F, Simeoni F, Francia P, Cominelli E, Conti L, Riboni M, Simoni L, Martin CR, Tonelli C, Galbiati M (2013) The Arabidopsis thaliana MYB60 promoter provides a tool for the spatio-temporal control of gene expression in stomatal guard cells. J Exp Bot 64:3361–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadasivam R, Natrajaratnam N, Dabu R, Muralidharan V, Rangasmay SRS (1988) Response of Mungbean cultivars to soil moisture stress at different growth phases. Mungbean Proceeding of the Second International Symposium. AVRDC. 260–262

  • Saint Pierre C, Crossa J, Manes Y, Reynolds MP (2010) Gene action of canopy temperature in bread wheat under diverse environments. Theor Appl Genet 120:1107–1117

    Article  PubMed  Google Scholar 

  • Sengupta D, Guha A, Reddy AR (2013) Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery. J Photoch Photobio B 127:170–181

    Article  CAS  Google Scholar 

  • Sheoran S, Thakur V, Narwal S, Turan R, Mamrutha HM, Singh V, Tiwari V, Sharma I (2015) Differential activity and expression profile of antioxidant enzymes and physiological changes in wheat (Triticum aestivum L.) under drought. Appl Biochem Biotechnol 177:1282–1298

    Article  CAS  PubMed  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotech 17:113–122

    Article  CAS  PubMed  Google Scholar 

  • Uprety DC, Bhatia A (1989) Effect of water stress on the photosynthesis, productivity and water status of Mungbean (Vigna radiata (L.) Wilczek). J Agron Crop Sci 163:115–123

    Article  Google Scholar 

  • Vir R, Lakhanpaul S, Mailk S, Umdale S, Bhat KV (2016) Utilization of germplasm for genetic improvement of mungbean (Vigna radiata (L.) Wilczek): The constraints and the opportunities. In: Rajpal VR, Rama Rao S, Raina SN (eds) Gene Pool Diversity and Crop Improvement, vol 1. Springer, Switzerland, pp 367–391

    Chapter  Google Scholar 

  • Wang H, Clarke JM (1993) Relationship of excised-leaf water loss and stomatal frequency in wheat. Can J Plant Sci 73:93–99

    Article  Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Dennis DT, McCourt P, Huang Y (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. PLANT J 43:413–424

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Basu MR, Bhaskara GB, Verslues PE, Haswell ES (2014) Plastid osmotic stress activates cellular stress responses in Arabidopsis. Plant Physiol 165:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susheel Kumar Raina.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Communicated by M. Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raina, S.K., Govindasamy, V., Kumar, M. et al. Genetic variation in physiological responses of mungbeans (Vigna radiata (L.) Wilczek) to drought. Acta Physiol Plant 38, 263 (2016). https://doi.org/10.1007/s11738-016-2280-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2280-x

Keywords

Navigation