Skip to main content
Log in

Toxicity Evaluation, Plant Growth Promotion, and Anti-fungal Activity of Endophytic Bacteria–Mediated Silver Nanoparticles

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, the uses of silver nanoparticles have increased, which lead to nanoparticles discharge into aquatic bodies which may, if not well controlled, have harmful effect on different organisms. This calls for the need to constantly evaluate the toxicity level of nanoparticles. In this study, green biosynthesized silver nanoparticles mediated by endophytic bacteria Cronobacter sakazakii (CS-AgNPs) were subjected to toxicity evaluation by brine shrimp lethality assay. The ability of CS-AgNPs to improve plant growth by nanopriming of Vigna radiata L seeds treated with different concentrations (1ppm, 2.5ppm, 5ppm and 10ppm) in order to enhance biochemical constituents was investigated, also its inhibitory effect to growth of phytopathogenic fungi Mucor racemose was examined. Results showed that Artemia salina treated with CS-AgNPs exhibited good hatching percentage and LC50 value of 688.41 µg/ml when Artemia salina eggs were exposed to CS-AgNPs during hatching. Plant growth was enhanced at 2.5ppm CS-AgNPs, with increased photosynthetic pigments, protein, and carbohydrate content. This study suggests that silver nanoparticles synthesized via endophytic bacteria Cronobacter sakazakii are safe to use and can be utilized as means of combating plant fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be available on request.

Code Availability

Not applicable.

References

  1. Kinnear, C., Moore, T. L., Rodriguez-Lorenzo, L., Rothen-Rutishauser, B., & Petri-Fink, A. (2017). Form follows function: Nanoparticle shape and its implications for nanomedicine. Chemical Review, 117(17), 11476–11521. https://doi.org/10.1021/acs.chemrev.7b00194

    Article  CAS  Google Scholar 

  2. Lee, P. Y., & Wong, K. K. Y. (2011). Nanomedicine: A new frontier in cancer therapeutics. Current Drug Delivery, 8(3), 245–253. https://doi.org/10.2174/156720111795256110

    Article  CAS  PubMed  Google Scholar 

  3. Ozkan, Y., Altinok, I., Ilhan, H., & Sokmen, M. (2015). Determinationof TiO2 and AgTiO2 nanoparticles in Artemia salina: Toxicity, morphological changes, uptake and depuration. Bulletin of Environmental Contamination and Toxicology, 96(1), 36–42. https://doi.org/10.1007/s00128-015-1634-1

    Article  CAS  PubMed  Google Scholar 

  4. Ates, M., Daniels, J., Arslan, Z., Farah, I. O., & Rivera, H. F. (2013). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: Effects of particle size and solubility on toxicity. Environmental Science: Processes and Impacts, 15(1), 225–233. https://doi.org/10.1039/c2em30540b

    Article  CAS  PubMed  Google Scholar 

  5. Khoshnood, R., Jaafarzadeh, N., Jamili, S. H., Farshchi, P., & Taghavi, L. (2017). Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp, Artemia franciscana Iranian Journal of Fisheries Sciences, 16(4), 1287–1296.

    Google Scholar 

  6. Calderón-Jiménez, B., Johnson, M. E., MontoroBustos, A. R., Murphy, K. E., Winchester, M. R., & Baudrit, V. (2017). Silver nanoparticles: Technological advances, societal impacts, and metrological challenges. Frontiers in Chemistry, 5, 6. https://doi.org/10.3389/fchem.2017.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoon, K. Y., HoonByeon, J., Park, J. H., & Hwang, J. (2007). Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. The Science of the Total Environment, 373(2–3), 572–575. https://doi.org/10.1016/j.scitotenv.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  8. Tian, J., Wong, K. K., Ho, C. M., Lok, C. N., Yu, W. Y., Che, C. M., Chiu, J. F., & Tam, P. K. (2007). Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem, 2(1), 129–136. https://doi.org/10.1002/cmdc.200600171

    Article  CAS  PubMed  Google Scholar 

  9. Khodashenas, B., & Ghorbani, H. R. (2014). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry (2019) 12, 1823–1838. https://doi.org/10.1016/j.arabjc.2014.12.014

  10. Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17(9), 1534. https://doi.org/10.3390/ijms17091534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., Brew, J. A., & Strano, M. S. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13(4), 400–408. https://doi.org/10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  12. Lu, C., Zhang, C., Wen, J., Wu, G., & Tao, M. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–171.

    CAS  Google Scholar 

  13. Sharma, P., Bhatt, D., Zaidi, M. G., Saradhi, P. P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea Applied Biochemistry and Biotechnology, 167, 2225–2233. https://doi.org/10.1007/s12010-012-9759-8

    Article  CAS  PubMed  Google Scholar 

  14. Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One, 8(7), e68752. https://doi.org/10.1371/journal.pone.0068752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kasprowicz, M. J., Gorczyca, A., & Szymocha, A. (2015). Physiological effects of nanosilver on vegetative mycelium, conidia and the development of the entomopathogenic fungus, Isaria fumosorosea Biocontrol Science and Technology, 25(8), 873–887. https://doi.org/10.1080/09583157.2015.1020284

    Article  Google Scholar 

  16. Mansoor, S., Zahoor, I., Baba, T. R., Padder, S. A., Bhat, Z. A., Koul, A. M., & Jiang, L. (2021). Fabrication of silver nanoparticles against fungal pathogens. Frontiers in Nanotechnology, 3, 679358. https://doi.org/10.3389/fnano.2021.679358

    Article  Google Scholar 

  17. Hoog, S. L., Cheng, Y., & Elpers, J. (2013). Duloxetine and pregnancy outcomes: Safety surveillance findings. International Journal of Medical Sciences, 10(4), 413–419. https://doi.org/10.7150/ijms.5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sarbhoy, A. K., & Kulshreshtha, M. (1999). FUNGI | food-borne fungi – Estimation by classical cultural techniques. Encyclopedia of Food Microbiology, 854–860. https://doi.org/10.1006/rwfm.1999.0720

  19. Kwon, J. H., & Hong, S. B. (2005). Soft rot of tomato caused by Mucor racemosus in Korea. Mycobiology, 33(4), 240–242. https://doi.org/10.4489/MYCO.2005.33.4.240

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nair, K. P. P. (2013). The diseases of ginger. The agronomy and economy of turmeric and ginger, 409–426. https://doi.org/10.1016/b978-0-12-394801-4.00021-1

  21. Saito, S., Michailides, T. J., & Xiao, C. L. (2016). Mucor rot—An emerging postharvest disease of mandarin fruit caused by Mucor piriformis and other Mucor spp. in California. Plant Disease, 100(6), 1054–1063. https://doi.org/10.1094/pdis-10-15-1173-re

  22. Michael, A. S., Thompson, C. G., & Abramovitz, M. (1956). As a test organism for a bioassay. Science, 123(3194), 464. https://doi.org/10.1126/science.123.3194.464

    Article  CAS  PubMed  Google Scholar 

  23. Vanhaecke, P., Persoone, G., Claus, C., & Sorgeloos, P. (1981). Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicology and Environmental Safety, 5(3), 382–387. https://doi.org/10.1016/0147-6513(81)90012-9

    Article  CAS  PubMed  Google Scholar 

  24. Sleet, R. B., & Brendel, K. (1983). Improved methods for harvesting and counting synchronous populations of Artemia nauplii for use in developmental toxicology. Ecotoxicology and Environmental Safety, 7(5), 435–446. https://doi.org/10.1016/0147-6513(83)90082-9

    Article  CAS  PubMed  Google Scholar 

  25. Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. (2019). Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238. https://doi.org/10.3390/nu11061238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Love, E. M., & Hemalatha, S. (2021). Biomedical application of novel green biomaterial synthesized from endophytic bacteria Cronobacter sakazakii. Inorganic and Nano-metal chemistry. https://doi.org/10.1080/24701556.2022.2078367

  27. Arulvasu, C., Jennifer, S. M., Prabhu, D., & Chandhirasekar, D. (2014). Toxicity effect of silver nanoparticles in brine shrimp Artemia. The Scientific World Journal, 2014, 256919. https://doi.org/10.1155/2014/256919

  28. Haji, B. M., Mushtaq, S., Soundhararajan, R., Nachimuthu, S., & Srinivasan, H. (2021). Marine endophytic fungi mediated Silver nanoparticles and their application in plant growth promotion in Vignaradiata L. International Journal of Nano Dimension, 12(1), 1–10. https://dorl.net/dor/20.1001.1.20088868.2021.12.1.1.6

  29. Ranjani, S., NoorulSamsoon, M. H., Raihanathus, S. A., & Hemalatha, S. (2021). Phytotoxicity assessment of synthesized green nanosuspension on germination and growth in Vigna radiata Inorganic Nano-Metal Chemistry. https://doi.org/10.1080/24701556.2021.1993916

    Article  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  31. David, T. P. (1990). An introduction to practical biochemistry (3rd ed.). McGraw-Hill.

    Google Scholar 

  32. Jenish, A., Ranjani, S., & Hemalatha, S. (2022). Moringa oleifera nanoparticles demonstrate antifungal activity against plant pathogenic fungi. Applied Biochemistry and Biotechnology, 194, 4959–4970. https://doi.org/10.1007/s12010-022-04007-2

    Article  CAS  PubMed  Google Scholar 

  33. Kachenton, S., Whangpurikul, V., Kangwanrangsan, N., Tansatit, T., & Jiraungkoorskul, W. (2018). Silver nanoparticles toxicity in brine shrimp and its histopathological analysis. International Journal of Nanoscience, 17(6). https://doi.org/10.1142/S0219581X18500072

  34. Wakawa, H. Y., Prof, D. R., & Fasihuddin, B. A. (2017). Brine shrimp lethality bioassay of Abrus precatorius (Linn) leaves and root extract. International Journal of Pharmacy and Pharmaceutical Sciences, 9(1), 179–181. https://doi.org/10.22159/ijpps.2017v9i1.15057

    Article  Google Scholar 

  35. Asharani, P. V., LianWu, Y., Gong, Z., & Valiyaveettil, S. (2008). Toxicity of silver nanoparticles in zebra fish models. Nanotechnology, 19(25), 255102. https://doi.org/10.1088/0957-4484/19/25/255102

    Article  CAS  PubMed  Google Scholar 

  36. Jochebed, R. S., Roy, A., Shanmugam, R., & Warrier, D. E. (2020). Preparation and characterization of cinnamon oil mediated gold nanoparticles synthesis and evaluation of its cytotoxicity using brine shrimp lethality assay. Journal of Evolution of Medical and Dental Sciences, 9(39), 2894–2897. https://doi.org/10.14260/jemds/2020/633

    Article  CAS  Google Scholar 

  37. Krishnaraj, C., Jagan, E. G., Ramachandran, R., Abirami, S. M., Mohan, N., & Kalaichelvan, P. T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochemistry, 47(4), 651–658. https://doi.org/10.1016/j.procbio.2012.01.006

    Article  CAS  Google Scholar 

  38. Sadak, M. S. (2019). Impact of silver nanoparticles on plant growth, some biochemical aspects, and yield of fenugreek plant (Trigonella foenum-graecum). Bullentin of the National Research Centre, 43, 38–44. https://doi.org/10.1186/s42269-019-0077-y

    Article  Google Scholar 

  39. Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3(10), 190–197.

    Google Scholar 

  40. Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds. Mill.). Saudi Journal of Biological Sciences, 21(1), 13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83–91. https://doi.org/10.1385/BTER:104:1:083

    Article  CAS  PubMed  Google Scholar 

  42. Jeevan Kumar, S. P., Rajendra Prasad, S., Banerjee, R., & Thammineni, C. (2015). Seed birth to death: Dual functions of reactive oxygen species in seed physiology. Annals of Botany, 116(4), 663–668. https://doi.org/10.1093/aob/mcv098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Govorov, A. O., & Carmeli, I. (2007). Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect. Nano Letters, 7(3), 620–625. https://doi.org/10.1021/nl062528t

    Article  CAS  PubMed  Google Scholar 

  44. Almeida, F., Rodrigues, M. L., & Coelho, C. (2019). The still underestimated problem of fungal diseases worldwide. Frontier in Microbiology, 10, 214. https://doi.org/10.3389/fmicb.2019.00214

    Article  Google Scholar 

  45. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology reports (Amsterdam Netherlands), 15, 11–23. https://doi.org/10.1016/j.btre.2017.03.002

    Article  PubMed  Google Scholar 

  46. Ocsoy, I., Paret, M. L., Ocsoy, M. A., Kunwar, S., Chen, T., You, M., & Tan, W. (2013). Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 7, 8972–8980. https://doi.org/10.1021/nn4034794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to B.S. Abdur Rahman Institute of Science and Technology, Chennai, for providing research facilities in school of life sciences.

Author information

Authors and Affiliations

Authors

Contributions

SH conceived and designed research. LEM conducted experiments and analyzed data. All authors wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to S. Hemalatha.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the manuscript for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Love, E.M., Hemalatha, S. Toxicity Evaluation, Plant Growth Promotion, and Anti-fungal Activity of Endophytic Bacteria–Mediated Silver Nanoparticles. Appl Biochem Biotechnol 195, 6309–6320 (2023). https://doi.org/10.1007/s12010-023-04383-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-023-04383-3

Keywords

Navigation