Skip to main content
Log in

Metagenomics and the niche concept

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

The metagenomics approach has revolutionised the fields of bacterial diversity, ecology and evolution, as well as derived applications like bioremediation and obtaining bioproducts. A further associated conceptual change has also occurred since in the metagenomics methodology the species is no longer the unit of study, but rather partial genome arrangements or even isolated genes. In spite of this, concepts coming from ecological and evolutionary fields traditionally centred on the species, like the concept of niche, are still being applied without further revision. A reformulation of the niche concept is necessary to deal with the new operative and epistemological challenges posed by the metagenomics approach. To contribute to this end, I review past and present uses of the niche concept in ecology and in microbiological studies, showing that a new, updated definition need to be used in the context of the metagenomics. Finally, I give some insights into a more adequate conceptual background for the utilisation of the niche concept in metagenomic studies. In particular, I raise the necessity of including the microbial genetic background as another variable into the niche space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LN, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1965) The evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Spec Feature, Ecol 78:1958–1965

    Google Scholar 

  • Cases I, De Lorenzo V, Ouzounis CA (2003) Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 11:248–253

    Article  PubMed  CAS  Google Scholar 

  • Clapham WB (1973) Natural ecosystems. MacMillan, New York

    Google Scholar 

  • Day RL, Laland KN, Odling-Smee FJ (2003) Rethinking adaptation: the niche-construction perspective. Perspect Biol Med 46:80–95

    Article  PubMed  CAS  Google Scholar 

  • de la Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, DeLong EF (2002) Microbial population genomics and ecology. Curr Opin Microbiol 5:520–524

    Article  Google Scholar 

  • DeLong EF (2004) Microbial population genomics and ecology: the road ahead. Environ Microbiol 6:875–878

    Article  PubMed  Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Friesen ML, Saxer G, Travisano M, Doebeli M (2004) Experimental evidence for sympatric ecological diversification due to frequency-dependent competition in Escherichia coli. Evolution 58:245–260

    PubMed  Google Scholar 

  • Galbraith EA, Antonopoulos DA, White BA (2004) Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model. Environ Microbiol 6:928–937

    Article  PubMed  CAS  Google Scholar 

  • Gray ND, Head IM (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492

    Article  PubMed  CAS  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California Thrasher. Auk 34:427–433

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  PubMed  CAS  Google Scholar 

  • Helling RB, Vargas C, Admas J (1987) Evolution of Escherichia coli during growth in a constant environment. Genetics 116:349–358

    PubMed  CAS  Google Scholar 

  • Herbold B, Moyle PB (1986) Introduced species and vacant niches. Am Nat 128:751–760

    Article  Google Scholar 

  • Horner-Devine MC, Carney KM, Bohannan BJM (2004) An ecological perspective on bacterial biodiversity. Proc R Soc Lond B 271:113–122

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Jamuna M, Jeevaratnam K (2004) Isolation and partial characterization of bacteriocins from Pediococcus species. Appl Microbiol Biotechnol 65:433–439

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Lawrence J (1997) Selfish operons and speciation by gene transfer. Trends Ecol Evol 5:355–359

    CAS  Google Scholar 

  • Lawrence J (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    Article  PubMed  Google Scholar 

  • Li J, Helmerhorst EJ, Leone CW, Troxler RF, Yaskell T, Haffajee AD, Socransky SS, Oppenheim FG (2004) Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97:1311–1318

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Williams AG (1993) Biological activities of symbiotic and parasitic protists in low O2 environments. Adv Microb Ecol 13:211–262

    Google Scholar 

  • Neilson JW, Josephson KL, Pepper L, Arnold RB, Di Giovanni GG, Sinclair NA (1994) Frequency of horizontal gene transfer of a large catabolic plasmid (pJP4) in soil. Appl Environ Microbiol 60:4053–4058

    PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1985) Analyzing natural microbial populations by rRNA sequences. ASM News 51:4–12

    Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  PubMed  CAS  Google Scholar 

  • Pazos F, Valencia A, De Lorenzo A (2003) The organization of the microbial biodegradation network from a systems-biology perspective. EMBO Rep 4:994–999

    Article  PubMed  CAS  Google Scholar 

  • Pianka ER (1978) Evolutionary ecology. Harper and Row, New York

    Google Scholar 

  • Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394:69–72

    Article  PubMed  CAS  Google Scholar 

  • Rainey PB, Buckling A, Kassen R, Travisano M (2000) The emergence and maintenance of diversity: insights from experimental bacterial populations. Trends Ecol Evol 15:243–247

    Article  PubMed  Google Scholar 

  • Remold SK, Lenski RE (2004) Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet 36:423–426

    Article  PubMed  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: genomics analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  PubMed  CAS  Google Scholar 

  • Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig RF et al (1994) Microbial evolution in a simple unstructured environment—genetic differentiation in Escherichia coli. Genetics 137:903–917

    PubMed  CAS  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Schloss PD, Handelsman P (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  PubMed  CAS  Google Scholar 

  • Schlüter A, Heuer H, Szczepanowski R, Forney LJ, Thomas CM, Phüler A, Top EM (2003) The 64 508 bp IncP-1b antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1b group. Microbiology 149:3139–3153

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TM, De Long EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378

    PubMed  CAS  Google Scholar 

  • Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350

    PubMed  CAS  Google Scholar 

  • Stein JL, Marsh TL, Wu KY, Shizuya H, DeLong EF (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40 kilobase-pair genome fragment from a planktonic marine Archaeon. J Bacteriol 178:591–599

    PubMed  CAS  Google Scholar 

  • Tekaia F, Yeramian E, Dujon B (2002) Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene 297:51–60

    Article  PubMed  CAS  Google Scholar 

  • Turner PE (2004) Phenotypic plasticity in bacterial plasmids. Genetics 167:9–20

    Article  PubMed  Google Scholar 

  • Tsutsui ND, Suarez AV, Grosberg RK (2003) Genetic diversity, asymmetrical aggression, and recognition in a widespread invasive species. Proc Natl Acad Sci 100:1078–1083

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. Pieter van Dillewijn, Professor Chris Thomas and an anonymous reviewer for helpful comments on earlier stages of the manuscript. This paper was written during a Sabbatical stay at the Estación Experimental del Zaidín (CSIC), Granada, Spain, granted to DEM by the Ministry of Education of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Marco.

Additional information

Diana Marco is a member of the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET).

Appendix

Appendix

Some terms used in the metagenomics field

Contig:

the result of joining an overlapping collection of sequences or clones.

Coverage (or depth):

the average number of times that a nucleotide is represented by a high-quality base in a collection of random raw sequence.

Metagenomic library:

a library made of cloned DNA from an environmental sample.

Raw sequence:

individual unassembled sequence reads, produced by sequencing of clones containing DNA inserts.

Scaffold:

the result of connecting contigs by linking information, such as paired-end reads from plasmids, paired-end reads from BACs, known mRNAs, or other sources. The contigs in a scaffold are ordered and oriented with respect to one another.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marco, D. Metagenomics and the niche concept. Theory Biosci. 127, 241–247 (2008). https://doi.org/10.1007/s12064-008-0028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-008-0028-x

Keywords

Navigation