Skip to main content
Log in

Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The development of Al2O3-SiO2 aerogel with high thermal stability and low thermal conductivity at low cost is meaningful for its scale application. In this paper, Al2O3-SiO2 aerogel (ASA) from water glass and aluminum chloride were successfully prepared. For comparison, SiO2 aerogel (SA) was also prepared. The physical properties, morphology, thermal stability, and thermal conductivity of ASA were explored. The specific surface area of ASA with a Al/Si molar ratio of 0.37 (named ASA-0.37) was 613 m2/g at room temperature, while that of SA was 606 m2/g. The specific surface area retention rate (ratio of the specific surface area after calcined to that at 25 °C) of ASA-0.37 (11.8%) after calcined at 1000 °C was higher than that of SA (1.2%). After calcined at 1200 °C, the ASA-0.37 displayed a lower thermal conductivity of 0.121 W/m·K than that of SA (0.167 W/m·K). It is shown that mullite crystals were produced during heat treatment of ASA, and it restrained the surface diffusion and viscous flow at high temperatures. Thus, high thermal stability was improved. This work provides a low-cost and useful solution to prepare Al2O3-SiO2 aerogel with high thermal stability and low thermal conductivity.

Graphical Abstract

The graphical abstract shows the mechanism of enhancing high-temperature resistance of the Al2O3-SiO2 aerogel. Without the doping of aluminum, the SiO2 aerogel is severely sintered when the temperature rises to 1200 °C. The SEM graph shows that there is almost no residual three-dimensional network structure and the SiO2 particles agglomerate into large particles. In Al2O3-SiO2 aerogel, the doped aluminum reacts with silica and the mullite crystal is formed. The formed mullite can effectively attenuate the sinter of SiO2 particles, and thus the three-dimensional network structure is retained so that the high-temperature performance of the aerogel is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang H, Ye F (2022) Microtexture, microstructure evolution, and thermal insulation properties of Si3N4/silica aerogel composites at high temperatures. RSC Adv 12:12226–12234

    Article  CAS  Google Scholar 

  2. He S, Huang Y, Chen G, Feng M, Dai H, Yuan B, Chen X (2019) Effect of heat treatment on hydrophobic silica aerogel. J Hazard Mater 362:294–302

    Article  CAS  Google Scholar 

  3. Bangi UKH, Jung I-K, Park C-S, Baek S, Park H-H (2013) Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying. Solid State Sci 18:50–57

    Article  CAS  Google Scholar 

  4. Zu G, Shen J, Zou L, Wang W, Lian Y, Zhang Z, Du A (2013) Nanoengineering Super Heat-Resistant, Strong Alumina Aerogels. Chem Mater 25:4757–4764

    Article  CAS  Google Scholar 

  5. Zu G, Shen J, Wang W, Zou L, Lian Y, Zhang Z, Liu B, Zhang F (2014) Robust, Highly Thermally Stable, Core–Shell Nanostructured Metal Oxide Aerogels as High-Temperature Thermal Superinsulators, Adsorbents, and Catalysts. Chem Mater 26:5761–5772

    Article  CAS  Google Scholar 

  6. Peng F, Jiang Y, Feng J, Li L, Cai H, Feng J (2020) A facile method to fabricate monolithic alumina–silica aerogels with high surface areas and good mechanical properties. J Eur Ceram Soc 40:2480–2488

    Article  CAS  Google Scholar 

  7. Wu L, Huang Y, Wang Z, Liu L, Xu H (2010) Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying. Appl Surf Sci 256:5973–5977

    Article  CAS  Google Scholar 

  8. Almeida CMR, Ghica ME, Ramalho AL, Durães L (2021) Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments. J Mater Sci 56:13604–13619

    Article  CAS  Google Scholar 

  9. Hong W, Liu X, Srinivasakannan C, Duan X, Wang X (2021) Novel aerogel absorbent derived from iron tailings via atmospheric drying. Arab J Sci Eng 47:6901–6914

    Article  Google Scholar 

  10. He S, Huang D, Bi H, Li Z, Yang H, Cheng X (2015) Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J Non-Cryst Solids 410:58–64

    Article  CAS  Google Scholar 

  11. Pan Y, He S, Gong L, Cheng X, Li C, Li Z, Liu Z, Zhang H (2017) Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater Des 113:246–253

    Article  CAS  Google Scholar 

  12. Berardi U (2015) The development of a monolithic aerogel glazed window for an energy retrofitting project. Appl Energy 154:603–615

    Article  Google Scholar 

  13. Jabbari-Gargari A, Moghaddas J, Hamishehkar H, Jafarizadeh-Malmiri H (2021) Carboxylic acid decorated silica aerogel nanostructure as drug delivery carrier. Microporous Mesoporous Mater 323:111220–111227

    Article  CAS  Google Scholar 

  14. Liu X-g, Mao Q-s, Jiang Y, Li Y, Sun J-l, Huang F-X (2021) Preparation of Al2O3-SiO2 composite aerogels and their Cu2+ absorption properties. Int J Miner, Metall Mater 28:317–324

    Article  CAS  Google Scholar 

  15. Yu H, Jiang Y, Lu Y, Li X, Zhao H, Ji Y, Wang M (2019) Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying. J Non-Cryst Solids 505:79–86

    Article  CAS  Google Scholar 

  16. Adhikary SK, Ashish DK, Rudžionis Z (2021) Aerogel based thermal insulating cementitious composites: A review. Energy Build 245:111058–111082

    Article  Google Scholar 

  17. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  CAS  Google Scholar 

  18. Ghica ME, Almeida CMR, Rebelo LSD, Cathoud-Pinheiro GC, Costa BFO, Durães L (2022) Novel Kevlar® pulp-reinforced alumina-silica aerogel composites for thermal insulation at high temperature. J Sol-Gel Sci Technol 101:87–102

    Article  CAS  Google Scholar 

  19. Shalygin AS, Kozhevnikov IV, Gerasimov EY, Andreev AS, Lapina OB, Martyanov ON (2017) The impact of Si/Al ratio on properties of aluminosilicate aerogels. Microporous Mesoporous Mater 251:105–113

    Article  CAS  Google Scholar 

  20. Ji X, Zhou Q, Qiu G, Yue C, Guo M, Chen F, Zhang M (2018) Preparation of monolithic silica-based aerogels with high thermal stability by ambient pressure drying. Ceram Int 44:11923–11931

    Article  CAS  Google Scholar 

  21. Zu G, Shen J, Wei X, Ni X, Zhang Z, Wang J, Liu G (2011) Preparation and characterization of monolithic alumina aerogels. J Non-Cryst Solids 357:2903–2906

    Article  CAS  Google Scholar 

  22. Liu L, Wang X, Zhang Z, Shi Y, Zhao Y, Shen S, Yao X, Shen J (2022) A facile method for fabricating a monolithic mullite fiber-reinforced alumina aerogel with excellent mechanical and thermal properties. Gels 8:380. https://doi.org/10.3390/gels8060380

    Article  CAS  Google Scholar 

  23. Wang X, Tian Y, Yu C, Liu L, Zhang Z, Wu Y, Shen J (2022) Organic/inorganic double-precursor cross-linked alumina aerogel with high specific surface area and high-temperature resistance. Ceram Int 48:17261–17269

    Article  CAS  Google Scholar 

  24. Ling X, Li B, Li M, Hu W, Chen W (2018) Thermal stability of Al-modified silica aerogels through epoxide-assisted sol–gel route followed by ambient pressure drying. J Sol-Gel Sci Technol 87:83–94

    Article  CAS  Google Scholar 

  25. Zhu J, Guo S, Li X (2015) Facile preparation of a SiO2–Al2O3 aerogel using coal gangue as a raw material via an ambient pressure drying method and its application in organic solvent adsorption. RSC Adv 5:103656–103661

    Article  CAS  Google Scholar 

  26. Aravind PR, Mukundan P, Krishna Pillai P, Warrier KGK (2006) Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous Mesoporous Mater 96:14–20

    Article  CAS  Google Scholar 

  27. Bardestani R, Patience GS, Kaliaguine S (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT, The. Can J Chem Eng 97:2781–2791

    Article  CAS  Google Scholar 

  28. Jadhav SB, Makki A, Hajjar D, Sarawade PB (2022) Synthesis of light weight recron fiber-reinforced sodium silicate based silica aerogel blankets at an ambient pressure for thermal protection. J Porous Mater 29:957–969

    Article  CAS  Google Scholar 

  29. Zhang X, Chen Z, Zhang J, Ye X, Cui S (2021) Hydrophobic silica aerogels prepared by microwave irradiation. Chem Phys Lett 762:138127–138135

    Article  CAS  Google Scholar 

  30. Yang Z, Zhu D, Li H (2020) A chitosan-assisted co-assembly synthetic route to low-shrinkage Al2O3-SiO2 aerogel via ambient pressure drying. Microporous Mesoporous Mater 293:109781–109789

    Article  CAS  Google Scholar 

  31. Zhang X, Zhang T, Yi Z, Yan L, Liu S, Yao X, Guo A, Liu J, Hou F (2020) Multiscale mullite fiber/whisker reinforced silica aerogel nanocomposites with enhanced compressive strength and thermal insulation performance. Ceram Int 46:28561–28568

    Article  CAS  Google Scholar 

  32. Jia H, Liu S, Mao Z, Wang D (2021) Preparation and properties of the Al2O3–SiO2 aerogel/alumina framework composite. Ceram Int 47:1466–1471

    Article  CAS  Google Scholar 

  33. Liu H, Liu J, Hong Z, Wang S, Gao X, Gu X (2020) Preparation of hollow fiber membranes from mullite particles with aid of sintering additives. J Adv Ceram 10:78–87

    Article  Google Scholar 

  34. Cai H, Jiang Y, Feng J, Zhang S, Peng F, Xiao Y, Li L, Feng J (2020) Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater Des 191:108640–108650

    Article  CAS  Google Scholar 

  35. Tang R, Hong W, Srinivasakannan C, Liu X, Wang X, Duan X (2022) A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep Purif Technol 281:119950–119960

    Article  CAS  Google Scholar 

  36. Hurwitz FI, Gallagher M, Olin TC, Shave MK, Ittes MΑ, Olafson KN, Fields MG, Guo H, Rogers RB (2014) Optimization of Alumina and Aluminosilicate Aerogel Structure for High-Temperature Performance. Int J Appl Glass Sci 5:276–286

    Article  CAS  Google Scholar 

  37. Wu X, Shao G, Shen X, Cui S, Wang L (2016) Novel Al2O3–SiO2composite aerogels with high specific surface area at elevated temperatures with different alumina/silica molar ratios prepared by a non-alkoxide sol–gel method. RSC Adv 6:5611–5620

    Article  CAS  Google Scholar 

  38. Wu X, Man J, Liu S, Huang S, Lu J, Tai J, Zhong Y, Shen X, Cui S, Chen X (2021) Isocyanate-crosslinked silica aerogel monolith with low thermal conductivity and much enhanced mechanical properties: Fabrication and analysis of forming mechanisms. Ceram Int 47:26668–26677

    Article  CAS  Google Scholar 

  39. Liao J-J, Gao P-Z, Xu L, Feng J (2018) A study of morphological properties of SiO2 aerogels obtained at different temperatures. J Adv Ceram 7:307–316

    Article  CAS  Google Scholar 

  40. Wu X, Shao G, Cui S, Wang L, Shen X (2016) Synthesis of a novel Al2O3–SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram Int 42:874–882

    Article  CAS  Google Scholar 

  41. Yu H, Tong Z, Yue S, Li X, Su D, Ji H (2021) Effect of SiO2 deposition on thermal stability of Al2O3-SiO2 aerogel. J Eur Ceram Soc 41:580–589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation for Young Scientists of China (Grant No. 51802213), Research Project of Shanxi Scholarship Council of China (Grant No. 2022-042), Key R & D program of Shanxi Province (Grant No. 202102030201006) and Shanxi Province Porous Ceramic Material Technology Innovation Center(202104010911002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Miao or Chao Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Hao, M., Liu, W. et al. Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity. J Sol-Gel Sci Technol 106, 561–571 (2023). https://doi.org/10.1007/s10971-023-06085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06085-y

Keywords

Navigation