Skip to main content
Log in

Community Structure of Planktonic Fungi and the Impact of Parasitic Chytrids on Phytoplankton in Lake Inba, Japan

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Freshwater fungi have received little attention by scientific research in recent years, especially fungi of the pelagic zone. Recently, parasitic fungi, termed chytrids, have been found to play important roles in aquatic food webs. Yet, the diversity and community structure of planktonic fungi including chytrids are not well studied. In this study, we examined the temporal fluctuations of freshwater fungi, including chytrids, in Lake Inba by using molecular techniques of denaturing gradient gel electrophoresis (DGGE). DGGE profiles, and associated sequence analysis, indicated that chytrids were present on all sampling dates from May to October (n = 12). In addition, analysis showed that a large proportion of the sequences belonged to chytrids of both parasitic and saprotrophic species. This finding was supported by microscopic observations using Calcofluor white to stain chytrids infecting various phytoplankton species. The percentages of infection by chytrids on two dominant diatom species, Aulacoseira granulata and Aulacoseira ambigua, showed a similar seasonal pattern in the DGGE band profiles. From the phylogenetic analysis and microscopic identification, the chytrids infecting the two diatoms are likely to be affiliated to Chytriomyces sp. and Zygorhizidium sp.. This is the first study to show that DGGE is a useful preliminary approach for examining the diversity of planktonic fungi including chytrids. Our results indicate both parasitic and saprotrophic chytrids are a significant component of freshwater fungi inhabiting the pelagic zone of Lake Inba, Japan. Further modification of DGGE, together with new molecular techniques and microscopic observation, would reveal the hidden diversity and ecological significance of planktonic fungi in aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bruning K (1991) Infection of the diatom Asterionella by a chytrid. 1. Effects of light on reproduction and infectivity of the parasite. J Plankton Res 13:102–117

    Google Scholar 

  2. Canter HM (1950) Fungal parasites of the phytoplankton. I. Studies on British Chytrids, X. Ann Bot 14:263–289

    Google Scholar 

  3. Canter HM (1953) Annotated list of British aquatic chytrids. Trans British Mycol Soc 36:278–303

    Article  Google Scholar 

  4. Canter HM (1967) Studies on British chytrids XXVI. A critical examination of Zygorhizidium melosirae Canter and Z. plankotonicum Canter. J Linn Soc (Bot) 60:85–97

    Article  Google Scholar 

  5. Canter HM, Lund JWG (1953) Studies on plankton parasites II. The parasitism of diatoms with special reference to lakes in the English Lake District. Trans British Mycol Soc 36:13–37

    Article  Google Scholar 

  6. Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120

    Article  PubMed  Google Scholar 

  7. Gleason FH, Kagami M, Lefèvre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 22:17–25

    Article  Google Scholar 

  8. Gulis V, Kuehn KA, Suberkropp K (2010) Fungi. In: Likens GE (ed) Plankton of inland waters. Elsevier, San Diego, pp 45–55

    Google Scholar 

  9. Hoshino Y, Morimoto S (2008) Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Sci Plant Nutr 54:701–710

    Article  CAS  Google Scholar 

  10. Ibelings BW, de Bruinn A, Kagami M, Rijkeboer M, Brehm M, van Donk E (2004) Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J Phycol 40:437–453

    Article  Google Scholar 

  11. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G, Johnson D, O'Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüsler A, Longcore JE, O'Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  12. Jobard M, Rasconi S, Sime-Ngando T (2010) Diversity and functions of microscopic fungi: a missing component in pelagic food webs. Aquat Sci 73:255–268

    Article  Google Scholar 

  13. Jobard M, Rasconi S, Sime-Ngando T (2010) Fluorescence in situ hybridization of uncultured zoosporic fungi: testing with clone-FISH and application to freshwater samples using CARD-FISH. J Microbiol Methods 82:236–243

    Article  Google Scholar 

  14. Kagami M, De Bruin A, Ibelings BW, van Donk E (2007) Parasitic chytrids: their effects on phytoplankton community and food-web dynamics. Hydrobiol 578:113–129

    Article  Google Scholar 

  15. Kagami M, Ishinabe J (2011) Factors affecting seasonal variations in bacterial abundance in Lake Inba. Jap J Limnol 72:67–72

    Google Scholar 

  16. Kagami M, van Donk E, de Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685

    Article  Google Scholar 

  17. Kagami M, von Elert E, Ibelings BW, de Bruin A, van Donk E (2007) The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc R Soc B 274:1561–1566

    Article  PubMed  Google Scholar 

  18. Lefèvre E, Bardot C, Noel C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71

    Article  PubMed  Google Scholar 

  19. Lefèvre E, Jobard M, Venisse JS, Bec A, Kagami M, Amblard C, Sime-Ngando T (2010) Development of a real-time PCR assay for quantitative assessment of uncultured freshwater zoosporic fungi. J Microbiol Methods 81:69–76

    Article  PubMed  Google Scholar 

  20. Letcher PM, Powell MJ (2002) A taxonomic summary of Chytriomyces (Chytridiomycota). Mycotaxon 84:447–487

    Google Scholar 

  21. Lepère C, Domaizon I, Debroas D (2008) Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949

    Article  PubMed  Google Scholar 

  22. Longcore J (1992) Morphology and zoospore ultrastructure of Chytriomyces angularis sp. nov. (Chytridiales). Mycologia 84:442–451

    Article  Google Scholar 

  23. Mille-Lindblom C, Fischer H, Tranvik LJ (2006) Litter-associated bacteria and fungi: a comparison of biomass and communities across lakes and plant species. Freshwater Biol 51:730–741

    Article  Google Scholar 

  24. Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabe M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453

    Article  PubMed  Google Scholar 

  25. Muyzer G, de Wall EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S r RNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  26. Nikolcheva LG, Cockshutt AM, Barlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    Article  PubMed  CAS  Google Scholar 

  27. Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and qualification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553

    Article  PubMed  CAS  Google Scholar 

  28. Sime-Ngando T, Lefèvre E, Gleason FH (2011) Hidden diversity among aquatic heterotrophic flagellates: ecological potentials of zoosporic fungi. Hydrobiologia 659:5–22

    Article  CAS  Google Scholar 

  29. Slapeta J, Moreira D, Lopez-Garcia P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc R Soc B 272:2073–2081

    Article  PubMed  CAS  Google Scholar 

  30. Sparrow FK (1943) Aquatic Phycomycetes. University of Michigan Press, Ann Arbor

    Google Scholar 

  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  32. Vainio EJ, Hantula J (2000) Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol Res 104:927–936

    Article  CAS  Google Scholar 

  33. Van Hannen E, Mooij W, van Agterveld M, Gons H, Laanbroek L (1999) Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:2478–2484

    PubMed  Google Scholar 

  34. Walker SF, Baldi Salas M, Jenkins D, Garner TWJ, Cunningham AA, Hyatt AD, Bosch B, Fisher MC (2007) Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Dis Aquat Org 77:105–112

    Article  PubMed  Google Scholar 

  35. Wurzbacher C, Bärlocher F, Grossart HP (2010) Fungi in lake ecosystems. Aqua Microbiol Ecol 59:125–149

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ogura from Chiba Prefecture who kindly showed us the chemical data and samples taken from Lake Inba. This study was supported by a research fellowship from the Japan Society of the Promotion of Science for Young Scientists, and the Futaba Electronics Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiko Kagami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagami, M., Amano, Y. & Ishii, N. Community Structure of Planktonic Fungi and the Impact of Parasitic Chytrids on Phytoplankton in Lake Inba, Japan. Microb Ecol 63, 358–368 (2012). https://doi.org/10.1007/s00248-011-9913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9913-9

Keywords

Navigation