Skip to main content
Log in

Effects of a bent structure on the linear viscoelastic response of diluted carbon nanotube suspensions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Commonly isolated carbon nanotubes in suspension have been modelled as a perfectly straight structure. Nevertheless, single-wall carbon nanotubes (SWNTs) contain naturally side-wall defects and, in consequence, natural bent configurations. Hence, a semi-flexile filament model with a natural bent configuration was proposed to represent physically the SWNT structure. This continuous model was discretized as a non-freely jointed multi-bead–rod system with a natural bent configuration. Using a Brownian dynamics algorithm the dynamical mechanical contribution to the linear viscoelastic response of naturally bent SWNTs in dilute suspension was simulated. The dynamics of such system shows the apparition of new relaxation processes at intermediate frequencies characterized mainly by the activation of a mild elasticity. Storage modulus evolution at those intermediate frequencies strongly depends on the flexibility of the system, given by the rigidity constant of the bending potential and the number of constitutive rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1799

    Article  CAS  PubMed  Google Scholar 

  • Ajayan PM, Ravikumar V, Charlier J (1998) Surface reconstruction and dimensional changes in single-walled carbon nanotubes. Phys Rev Lett 81(7):1437–1440

    Article  CAS  ADS  Google Scholar 

  • Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824

    Article  CAS  Google Scholar 

  • Binh VT, Vincent P, Feschet F, Bonard J (2000) Local analysis of the morphological properties of single-wall carbon nanotubes by Fresnel projection microscopy. J Appl Phys 88(6):3385–3391

    Article  CAS  ADS  Google Scholar 

  • Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymer liquids. Vol. 2: Kinetic Theory. Wiley Inter-Science, New York

    Google Scholar 

  • Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76(6):971–974

    Article  CAS  ADS  PubMed  Google Scholar 

  • Clauss W (1999) Scanning tunneling microscopy of carbon nanotubes. Appl Phys A-Mater 69(3):275–281

    Article  CAS  ADS  Google Scholar 

  • Clinard C, Rouzaud JN, Delpeux S, Beguin F, Conard J (1994) Electron microscopy, growth and defects of carbon nanotubes. J Phys Chem Solids 55(7):651–657

    Article  CAS  ADS  Google Scholar 

  • Davis VA, Ericson LM, Parra-Vasquez NG, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrel C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Phase behaviour and rheology of SWNTs in superacids. Macromolecules 37:154–160

    Article  CAS  ADS  Google Scholar 

  • Dimitrakopulos GP, Dravid DP, Karakostas TH, Pond RC (1997) The defect character of carbon nanotubes and nanoparticles. Acta Crystallogr A 53(3):341–351

    Article  Google Scholar 

  • Doyle PS, Shaqfeh ESG, Gast AP (1997) Dynamic simulation of freely draining flexible polymers in steady linear flows. J Fluid Mech 334:251–291

    Article  MATH  CAS  ADS  Google Scholar 

  • Duggal R, Pasquali M (2006) Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys Rev Lett 96:246104

    Article  ADS  PubMed  CAS  Google Scholar 

  • Fakhri N, Tsyboulski DA, Cognet L, Weisman RB, Pasquali M (2009) Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids. Proc Natl Acad Sci USA 106(34):14219–14223

    Article  CAS  ADS  PubMed  Google Scholar 

  • Fan Z, Advani SG (2005) Characterization of orientation state of carbon nanotubes in shear flow. Polymer 46(14):5232–5240

    Article  CAS  Google Scholar 

  • Fan Z, Advani SG (2007) Rheology of multiwall carbon nanotube suspensions. J Rheol 51(4):585–604

    Article  CAS  ADS  Google Scholar 

  • Fixman M (1978) Simulation of polymer dynamics. I. General theory. J Chem Phys 69(4):1527–1537

    Article  CAS  ADS  Google Scholar 

  • Fixman M (1986) Implicit algorithm for Brownian dynamics of polymers. Macromolecules 19:1195–1204

    Article  CAS  ADS  Google Scholar 

  • Folgar F, Tucker CL III (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3(2):98–119

    Article  CAS  Google Scholar 

  • Gottlieb M, Bird RB (1976) A molecular dynamics calculation to confirm the incorrectness of the random-walk distribution for describing the Kramers freely jointed bead–rod chain. J Chem Phys 65(6):2467–2468

    Article  CAS  ADS  Google Scholar 

  • Grassia P, Hinch EJ (1996) Computer simulations of polymer chain relaxation via Brownian motion. J Fluid Mech 308:255–288.

    Article  MATH  CAS  ADS  Google Scholar 

  • Grassia PS, Hinch EJ, Nitsche LC (1995) Computer simulations of Brownian motion of complex systems. J Fluid Mech 282:373–288

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Han J, Anantram MP, Jaffe RL, Kong J, Dai H (1998) Observation and modelling of single-wall carbon nanotube junctions. Phys Rev B 57(23):14983–14989

    Article  CAS  ADS  Google Scholar 

  • Hassager O (1974) Kinetic theory and rheology of bead–rod models for macromolecular solutions. II. Linear unsteady flow properties. J Chem Phys 60(10):4001–4008

    Article  CAS  ADS  Google Scholar 

  • Hinch EJ (1994) Brownian motion with stiff bonds and rigid constraints. J Fluid Mech 271:219–234

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Hinch EJ, Leal LG (1972) The effect of Brownian motion on the rheological properties of a suspension of nonspherical particles. J Fluid Mech 52:683–712

    Article  MATH  ADS  Google Scholar 

  • Hough LA, Islam MF, Janmey PA, Yodh AG (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93:168102

    Article  CAS  ADS  PubMed  Google Scholar 

  • Huang J, Choi WB (2008) Controlled growth and electrical characterization of bent single-walled carbon nanotubes. Nanotechnology 19:505601

    Article  PubMed  CAS  Google Scholar 

  • Kam NWS, Jessop TC, Wender PA, Dai H (2004) Nanotube molecular transporter: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126(22):6850–6851

    Article  CAS  Google Scholar 

  • Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB (2004) Flow-induced properties of nanotube-filled polymer materials. Nat Mater 3:564–568

    Article  CAS  ADS  PubMed  Google Scholar 

  • Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43:7483–7491

    Article  CAS  Google Scholar 

  • Kramers HA (1944) Het gedrag van macromoleculen in een stroomende vloeistof. Physica 11(1):1–19

    Article  CAS  ADS  Google Scholar 

  • Lambin PH, Meunier V (1999) Structural properties of junctions between two carbon nanotubes. Appl Phys A 68:263–266

    Article  CAS  ADS  Google Scholar 

  • Lamprecht C, Danzberger J, Lukanov P, Tilmaciu CM, Galibert AM, Soula B, Flahaut E, Gruber HJ, Hinterdorfer P, Ebner A, Kienberg F (2009) AMF imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 109(8):899–906

    Article  CAS  PubMed  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lijima S, Ichihashi T, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356(6372):776–778

    Article  ADS  Google Scholar 

  • Liu TW (1989) Flexible polymer chain dynamics and rheological properties in steady flows. J Chem Phys 90:5826–5842

    Article  CAS  ADS  Google Scholar 

  • Loos J, Alexeev A, Grossiord N, Koning CE, Regev O (2005) Visualization of single-wall carbon nanotubes (SWNT) networks in conductive polystyrene nanocomposites by charge contrast imaging. Ultramicroscopy 104:160–167

    Article  CAS  PubMed  Google Scholar 

  • Ma WKA, Chinesta F, Ammar A, Mackley MR (2008a) Rheological modeling of carbon nanotube aggregate suspensions. J Rheol 52(6):1311–1330

    Article  CAS  ADS  Google Scholar 

  • Ma AWK, Chinesta F, Tuladhar T, Mackley M (2008b) Filament stretching of carbon nanotube suspensions. Rheol Acta 47:447–457

    Article  CAS  Google Scholar 

  • Ma A, Cruz C, Giner A, Mackley M, Régnier G, Chinesta F (2008c) Modelling elastic behaviour in functionalized carbon nanotubes suspensions. Inter J Mater Form, Suppl 1:631–634

    Article  Google Scholar 

  • Ma AWK, Chinesta F, Mackley MR (2009) The rheology and modelling of chemically treated carbon nanotubes suspensions. J Rheol 53(3):547–573

    Article  CAS  ADS  Google Scholar 

  • McEuen PL (2000) Single-wall carbon nanotubes. Phys World 46:1804–1811

    Google Scholar 

  • Mendes MJ, Schmidt HK, Pasquali M (2008) Brownian dynamics simulations of single-wall carbon nanotube separation by type using electrophoresis. J Phys Chem B 112:7467–7477

    Article  CAS  PubMed  Google Scholar 

  • Montesi A, Morse DC, Pasquali M (2005) Brownian dynamics algorithm for bead–rod semiflexible chain with anisotropic friction. J Chem Phys 122:084903

    Article  PubMed  CAS  Google Scholar 

  • Morse DC (1998) Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 1. Model and stress tensor. Macromolecules 31(20):7030–7043

    Article  CAS  ADS  Google Scholar 

  • Ottinger HC (1994) Brownian dynamics of rigid polymer chains with hydrodynamic interactions. Phys Rev E 50(4):2696–2701

    Article  ADS  Google Scholar 

  • Ottinger HC (1996) Stochastic processes in polymeric fluids. Springer, Berlin.

    Google Scholar 

  • Ouyang M, Huang J, Cheung CL, Lieber CM (2001) Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291(5501):97–100

    Article  CAS  ADS  PubMed  Google Scholar 

  • Pan ZW, Xie SS, Chang BH, Wang CY, Lu L, Liu W, Zhou WY, Li WZ, Qian LX (1998) Very long carbon nanotubes. Nature 394(6694):631–632

    Article  CAS  ADS  Google Scholar 

  • Parra-Vasquez ANG, Stepanek I, Davis VA, Moore VC, Haroz EH, Shaver J, Hauge RH, Smalley RE, Pasquali M (2007) Simple length determination of single-walled carbon nanotubes by viscosity measurements in dilute suspensions. Macromolecules 40(11):4043–4047

    Article  CAS  ADS  Google Scholar 

  • Pasquali M, Morse DC (2002) An efficient algorithm for metric correction forces in simulations of linear polymers with constrained bond lengths. J Chem Phys 116(5):1834–1838

    Article  CAS  ADS  Google Scholar 

  • Petrie CJS (1999) The rheology of fibre suspensions. J Non-Newton Fluid 87(2–3):369–402

    Article  MATH  CAS  Google Scholar 

  • Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes. J Rheol 50(5):599–610

    Article  CAS  ADS  Google Scholar 

  • Rajabian M, Dubois C, Grmela M (2005) Suspensions of semiflexible fibers in polymeric fluids: rheology and thermodynamics. Rheol Acta 44(5):521–535

    Article  CAS  Google Scholar 

  • Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. CR Phys 4:993–1008

    CAS  Google Scholar 

  • Sepehr M, Carreau PJ, Grmela M, Ausias G, Lafleur PG (2004) Comparison of rheological properties of fiber suspensions with model predictions. J Polym Eng 24(6):579–610

    CAS  Google Scholar 

  • Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612

    Article  CAS  Google Scholar 

  • Shankar V, Pasquali M, Morse DC (2002) Theory of linear viscoelasticity of semiflexible rods in dilute solution. J Rheol 46(5):1111–1154

    Article  CAS  ADS  Google Scholar 

  • Shim M, Kam NWS, Chen RJ, Li Y, Dai H (2002) Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2(4):285–288

    Article  CAS  ADS  Google Scholar 

  • Somasi M, Khomami B, Woo NJ, Hur JS, Shaqfeh ESG (2002) Brownian dynamics simulations of bead–rod and bead–spring chains: numerical algorithms and coarse-graining issues. J Non-Newton Fluid Mech 108(1–3):227–255

    Article  MATH  CAS  Google Scholar 

  • Tsyboulski DA, Bachilo SM, Weisman RB (2005) Versatil visualisation on individual single-walled carbon nanotubes with near-infrared fluorescence microscopy. Nano Lett 5(5):975–979

    Article  CAS  ADS  PubMed  Google Scholar 

  • Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290(5495):1331–1334

    Article  CAS  ADS  PubMed  Google Scholar 

  • Vijayaraghavan A, Marquardt CW, Dehm S, Hennrich F, Krupke R (2010) Imaging defects and junctions in single-walled carbon nanotubes by voltage-contrast scanning electron microscopy. Carbon 48:494–500

    Article  CAS  Google Scholar 

  • Wako K, Oda T, Tachibana M, Kojima K (2008) Bending deformation of single-walled carbon nanotubes caused by 5–7 pair couple defect. Jpn J Appl Phys 1 47(8):6601–6605

    Article  CAS  Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    Article  CAS  ADS  PubMed  Google Scholar 

  • Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44(6):537–562

    Article  CAS  Google Scholar 

  • Xue B, Shao X, Cai W (2009) Comparison of the properties of bent and straight single-walled carbon nanotube intramolecular junctions. J Chem Theory Comput 5(6):1554–1559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Anson Ma (Rice University) and Prof. Malcolm Mackley (University of Cambridge) for fruitful discussions and for providing helpful experimental information (Fig. 1). We would like to acknowledge Dr. Anson Ma (Rice University), Dr. Loren Picco (Bristol University) and Prof. Mervyn Miles (Bristol University) for allowing us to use the AFM image (Fig. 2). We would like to thank also the GeM institute (Institute de Recherche en Génie Civil et Mécanique) at Nantes (France) for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Régnier.

Appendix A

Appendix A

Total bending force in a multi-bead–rod system writes:

$$ {\rm {\bf F}}_k^\phi =-\frac{\partial \phi }{\partial {\rm {\bf r}}_k }=\frac{K_{\rm b} }{a}\sum\limits_{i=2}^{n-1} {\frac{\partial \left({{\rm {\bf u}}_i \cdot {\rm {\bf u}}_{i-1}}\right)}{\partial {\rm {\bf r}}_k}} $$
(29)

Expanding Eq. 29 we have:

$$ {\rm {\bf F}}_k^\phi \!=\!\frac{K_{\rm b} }{a}\!\left(\begin{array}{l} \displaystyle \frac{\partial ( {{\rm {\bf u}}_2 \!\cdot {\rm {\bf u}}_1 } )}{\partial {\rm {\bf r}}_k }\!+\!...\!+\!\frac{\partial ({{\rm {\bf u}}_{k-1} \!\cdot {\rm {\bf u}}_{k-2} } )}{\partial {\rm {\bf r}}_k}\!+\!\frac{\partial ({{\rm {\bf u}}_k \cdot {\rm {\bf u}}_{k-1} })}{\partial {\rm {\bf r}}_k}\\[10pt]\displaystyle \!+\frac{\partial ({{\rm {\bf u}}_{k+1} \cdot {\rm {\bf u}}_k})}{\partial {\rm {\bf r}}_k }\!+\!...\!+\!\frac{\partial ( {{\rm {\bf u}}_{n-1} \cdot {\rm {\bf u}}_{n-2} } )}{\partial {\rm {\bf r}}_k } \end{array}\!\right) $$
(30)
$$ {\rm {\bf F}}_k^\phi \!=\!\frac{K_{\rm b} }{a}\!\left(\begin{array}{l} \displaystyle\frac{\partial {\rm {\bf u}}_2 }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_1 \!+\!\frac{\partial {\rm {\bf u}}_1 }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_2 ...\!+\!\frac{\partial {\rm {\bf u}}_{k-1} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k-2} \\[10pt] \displaystyle \!+\frac{\partial {\rm {\bf u}}_{k-2} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k-\!1} \!+\!\frac{\partial {\rm {\bf u}}_k }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k-1\!} \!+\!\frac{\partial {\rm {\bf u}}_{k-1} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_k \!+\!\frac{\partial {\rm {\bf u}}_{k+1} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_k \\[10pt] \displaystyle +\!\frac{\partial {\rm {\bf u}}_k }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k+1} \!+\!... \!+\!\frac{\partial {\rm {\bf u}}_{n-1} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{n-2} \!+\!\frac{\partial {\rm {\bf u}}_{n-2} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{n-1} \end{array}\!\right) $$
(31)

Equation 31 can be evaluated using the identity:

$$ \frac{\partial }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_i =\frac{1}{a}\left( {\delta _{k,i+1} -\delta _{k,i} } \right)\left( {{\rm {\bf I}}-{\rm {\bf u}}_i \otimes {\rm {\bf u}}_i } \right) $$
(32)

Observing identity (32) is clear that the derivative \(\frac{\partial }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_i\) takes a non-zero value only when i is k − 1 or k. Hence, considering a bead k in the middle of an infinite chain, Eq. 31 becomes:

$$ \begin{array}{rll} {\rm {\bf F}}_k^\phi &=&\frac{K_{\rm b} }{a}\left( {\frac{\partial {\rm {\bf u}}_{k-1} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k-2} } \right)+\frac{K_{\rm b} }{a}\left( {\frac{\partial {\rm {\bf u}}_k }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k-1} +\frac{\partial {\rm {\bf u}}_{k-1} }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_k } \right)\\ &&+\,\frac{K_{\rm b} }{a}\left( {\frac{\partial {\rm {\bf u}}_k }{\partial {\rm {\bf r}}_k }{\rm {\bf u}}_{k+1} } \right) \end{array}$$
(33)

Total bending force on bead k, as given in the previous equation, can be interpreted as the sum of three independent contributions. In order to explain the origin of those contributions consider a multi-bead–rod system containing n beads decomposed into n − 2 independent sub-sections of two consecutive rods as showed in Fig. 4. Taking each of those sub-sections as an independent system, the expressions for the bending forces associated to each sub-section are given by Eq. 29. For example, sub-section p (composed by beads p, p + 1 and p + 2) has the associated bending forces \({\rm {\bf F}}_{p,p}^\phi\), \({\rm {\bf F}}_{p+1,p}^\phi\) and \({\rm {\bf F}}_{p+2,p}^\phi\), where first sub-index refers to the bead and second sub-index refers to the sub-section. Mathematically, those bending forces write:

$$ {\rm {\bf F}}_{p,p}^\phi =\frac{K_{\rm b} }{a}\frac{\partial \left({{\rm {\bf u}}_{p+1} \cdot {\rm {\bf u}}_p } \right)}{\partial {\rm {\bf r}}_p }=\frac{K_{\rm b} }{a}\frac{\partial {\rm {\bf u}}_p }{\partial {\rm {\bf r}}_p }{\rm {\bf u}}_{p+1} $$
(34)
$$ \begin{array}{rll} {\rm {\bf F}}_{p+1,p}^\phi &=&\frac{K_{\rm b} }{a}\frac{\partial \left( {{\rm {\bf u}}_{p+1} \cdot {\rm {\bf u}}_p } \right)}{\partial {\rm {\bf r}}_{p+1} }=\frac{K_{\rm b} }{a}\frac{\partial {\rm {\bf u}}_{p+1} }{\partial {\rm {\bf r}}_{p+1} }{\rm {\bf u}}_p \\ &&+\frac{K_{\rm b} }{a}\frac{\partial {\rm {\bf u}}_p }{\partial {\rm {\bf r}}_{p+1} }{\rm {\bf u}}_{p+1} \end{array}$$
(35)
$$ {\rm {\bf F}}_{p+2,p}^\phi =\frac{K_{\rm b} }{a}\frac{\partial \left( {{\rm {\bf u}}_{p+1} \cdot {\rm {\bf u}}_p } \right)}{\partial {\rm {\bf r}}_{p+2} }=\frac{K_{\rm b} }{a}\frac{\partial {\rm {\bf u}}_{p+1} }{\partial {\rm {\bf r}}_{p+2} }{\rm {\bf u}}_p $$
(36)

Applying identity (32) to the three previous equations we have:

$$ {\rm {\bf F}}_{p,p}^\phi =-\frac{K_{\rm b} }{a^2}\left( {{\rm {\bf I}}-{\rm {\bf u}}_p \otimes {\rm {\bf u}}_p } \right){\rm {\bf u}}_{p+1} $$
(37)
$$ \begin{array}{rll} {\rm {\bf F}}_{p+1,p}^\phi &=&-\frac{K_{\rm b} }{a^2}\left( {{\rm {\bf I}}-{\rm {\bf u}}_{p+1} \otimes {\rm {\bf u}}_{p+1} } \right){\rm {\bf u}}_p \\ &&+\frac{K_{\rm b} }{a^2}\left({{\rm {\bf I}}-{\rm {\bf u}}_p \otimes {\rm {\bf u}}_p } \right){\rm {\bf u}}_{p+1} \end{array}$$
(38)
$$ {\rm {\bf F}}_{p+2,p}^\phi =\frac{K_{\rm b} }{a^2}\left({{\rm {\bf I}}-{\rm {\bf u}}_{p+1} \otimes {\rm {\bf u}}_{p+1} } \right){\rm {\bf u}}_p $$
(39)

From the previous equations it results clear that bending forces are in mechanical equilibrium. For this reason:

$$ {\rm {\bf F}}_{p+1,p}^\phi =-{\rm {\bf F}}_{p,p}^\phi -{\rm {\bf F}}_{p+2,p}^\phi $$
(40)

Now, using the previous results about the decomposition of a multi-bead–rod system is easy to explain the origin of different contributions in Eq. 33 as follows:

$$ {\rm {\bf F}}_{k}^\phi = {\rm {\bf F}}_{k,k-2}^\phi + {\rm {\bf F}}_{k,k-1}^\phi +{\rm {\bf F}}_{k,k}^\phi $$
(41)

In other words, total bending force on bead k can be interpreted as the sum of all the independent bending forces coming from sub-sections containing bead k.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, C., Illoul, L., Chinesta, F. et al. Effects of a bent structure on the linear viscoelastic response of diluted carbon nanotube suspensions. Rheol Acta 49, 1141–1155 (2010). https://doi.org/10.1007/s00397-010-0487-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0487-0

Keywords

Navigation