Skip to main content
Log in

On the time scales of nonlinear instability in miscible displacement porous media flow

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we analyze the time scales associated with instable fingering induced by density contrasts in miscible displacement porous media flow. We perform numerical simulations of a two-dimensional domain with boundaries that are closed to flow and identify the three regimes of the dynamics, namely the development of a stable diffusive boundary layer, the onset and growth of instabilities, and the fully nonlinear dynamics. Special focus is given to the onset of the fully nonlinear regime. The results are generic in the sense that there are no parameters in the non-dimensional model problem. Large ensembles are studied and an error estimate is given based on the combined effect of numerical errors and sampling errors. The nonlinear time scales show a dependence on the size of initial perturbations. We estimate this size for three formations used for CO2 storage and find that the onset of enhanced convective mixing is considerably delayed compared with the linear onset time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, R.: Implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baklid, A., Korbøl, R., Owren, G.: Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE 36600, 269–277 (1996)

    Google Scholar 

  3. Batzle, M., Wang, Z.: Seismic properties of pore fluids. Geophysics 11, 1396–1408 (1992)

    Google Scholar 

  4. Bear, J., Bachmat, Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic, Norwell (1991)

    MATH  Google Scholar 

  5. Chadwick, R.A., Zweigel, P., Gregersen, U., Kirby, G.A., Holloway, S., Johannessen, P.N.: Geological reservoir characterization of a CO2 storage site: the Utsira Sand, Sleipner, northern North Sea. Energy 29, 1371–1381 (2004)

    Article  Google Scholar 

  6. Diersch, H.-J.G., Kolditz, O.: Variable-density flow and transport in porous media: approaches and challenges. Adv. Water Resour. 25, 899–944 (2002)

    Article  Google Scholar 

  7. Duan, Z., Sun, R.: An improved model calculating CO2 solubility in pure water and aqueous NaCl solution from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 193, 257–271 (2003)

    Article  Google Scholar 

  8. Elder, J.W.: Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29–48 (1967)

    Article  Google Scholar 

  9. Elder, J.W.: Transient convection in a porous medium. J. Fluid Mech. 27(3), 609–623 (1967)

    Article  Google Scholar 

  10. Elenius, M.T., Nordbotten, J.M., Kalisch, H.: Effects of a capillary transition zone on the stability of a diffusive boundary layer. IMA J. Appl. Math. (2012, accepted for publication)

  11. Ennis-King, J.P., Paterson, L.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J. 10(3), 349–356 (2005)

    Google Scholar 

  12. Ennis-King, J.P., Preston, I., Paterson, L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17(8), 084107 (2005)

    Article  Google Scholar 

  13. Fein, E.: d 3 f-Ein Programmpaket zur Modellierung von Dichteströmungen. GRS, Braunschweig, GRS-139 (1998)

  14. Frolkovic, P., De Schepper, H.: Numerical modelling of convection dominated transport coupled with density driven flow in porous media. Adv. Water Resour. 24, 63–72 (2001)

    Article  Google Scholar 

  15. Garcia, J.E.: Density of aqueous solutions of CO2. Report of Lawrence Berkley National Laboratory (2001)

  16. Green, C., Ennis-King, J., Pruess, K.: Effect of vertical heterogeneity on long-term migration of CO2 in saline formations. Energy Proc. 1, 1823–1830 (2009)

    Article  Google Scholar 

  17. Hidalgo, J.J., Carrera, J.: Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441–452 (2009)

    Article  MATH  Google Scholar 

  18. Iding, M., Ringrose, P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenhouse Gas Control 4, 242–248 (2010)

    Article  Google Scholar 

  19. Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7(3), 169–182 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johannsen, K.: Numerische Aspekte dichtegetriebener Strömung in porösen Medien. Professorial dissertation (habilitation), Heidelberg, Germany (2004)

    Google Scholar 

  21. Johannsen, K., Oswald, S., Held, R., Kinzelbach, W.: Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium. Adv. Water Resour. 29, 1690–1704 (2006)

    Article  Google Scholar 

  22. Johnson, R.A.: Miller and Freund’s Probability and Statistics for Engineers. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  23. Kneafsey, T.J., Pruess, K.: Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection. Transp. Porous Med. 82, 123–139 (2010)

    Article  Google Scholar 

  24. Maldal, T., Tappel, I.M.: CO2 underground storage for Shøhvit gas field development. Energy 29, 1403–1411 (2004)

    Article  Google Scholar 

  25. Mathieson, A., Wright, I., Roberts, D., Ringrose, P.: Satellite imaging to monitor CO2 movement at Krechba, Algeria. Energy Proc. 1, 2201–2209 (2009)

    Article  Google Scholar 

  26. Pamukcu, Y., Hurter, S., Jammes, L., Vu-Hoang, D., Pekot, L.: Characterizing and predicting short term performance for the In Salah Krechba field CCS joint industry project. Energy Proc. 4, 3371–3378 (2011)

    Article  Google Scholar 

  27. Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443–455 (2010)

    Article  Google Scholar 

  28. Pham, T.H.V., Maast, T.E., Hellevang, H., Aagard, P.I.: Numerical modeling including hysteresis properties for CO2 storage in Tubåen formation, Snøhvit field, Barents Sea. Energy Proc. 4, 3746–3753 (2011)

    Article  Google Scholar 

  29. Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)

    Article  MathSciNet  Google Scholar 

  30. Rochelle, C.A., Moore, Y.A.: The solubility of supercritical CO2 into pure water and synthetic Utsira porewater. British Geological Survey, CR/02/052 (2006)

  31. Slim, A.C., Ramakrishnan, T.S.: Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22, 124103 (2010)

    Article  Google Scholar 

  32. Tewes, F., Boury, F.: Formation and rheological properties of the supercritical CO2–water pure interface. J. Phys. Chem. 548, 892–898 (2005)

    Google Scholar 

  33. van Duijn, C.J., Pieters, G.J.M., van der Ploeg, A., Wooding, R.A.: Stability criteria for the vertical boundary layer formed by throughflow near the surface of a porous medium. In: Raats, P.A.C., Smiles, D., Warrick, A.W. (eds.) Environmental Mechanics; Water, Mass and Energy Transfer in the Biosphere—The Philip Volume, vol. 129, pp. 155–169 (2002)

  34. Wooding, R.A.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2, 273–285 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wooding, R.A., Tylor, S.W., White, I.: Convection in groundwater below an evaporating salt lake: 1. Onset of instability. Water Resour. Res. 33(6), 1199–1217 (1997)

    Article  Google Scholar 

  36. Wooding, R.A., Tylor, S.W., White, I., Anderson, P.A.: Convection in groundwater below an evaporating salt lake: 2. Evolution of fingers and plumes. Water Resour. Res. 33(6), 1219–1228 (1997)

    Article  Google Scholar 

  37. Xu, X., Chen, S., Zhang, D.: Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397–407 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teres Elenius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elenius, M.T., Johannsen, K. On the time scales of nonlinear instability in miscible displacement porous media flow. Comput Geosci 16, 901–911 (2012). https://doi.org/10.1007/s10596-012-9294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9294-2

Keywords

Navigation