Skip to main content
Log in

Modelling geosmin concentrations in three sources of raw water in Quebec, Canada

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The presence of off-flavour compounds such as geosmin, often found in raw water, significantly reduces the organoleptic quality of distributed water and diverts the consumer from its use. To adapt water treatment processes to eliminate these compounds, it is necessary to be able to identify them quickly. Routine analysis could be considered a solution, but it is expensive and delays associated with obtaining the results of analysis are often important, thereby constituting a serious disadvantage. The development of decision-making tools such as predictive models seems to be an economic and feasible solution to counterbalance the limitations of analytical methods. Among these tools, multi-linear regression and principal component regression are easy to implement. However, due to certain disadvantages inherent in these methods (multicollinearity or non-linearity of the processes), the use of emergent models involving artificial neurons networks such as multi-layer perceptron could prove to be an interesting alternative. In a previous paper (Parinet et al., Water Res 44: 5847-5856, 2010), the possible parameters that affect the variability of taste and odour compounds were investigated using principal component analysis. In the present study, we expand the research by comparing the performance of three tools using different modelling scenarios (multi-linear regression, principal component regression and multi-layer perceptron) to model geosmin in drinking water sources using 38 microbiological and physicochemical parameters. Three very different sources of water, in terms of quality, were selected for the study. These sources supply drinking water to the Québec City area (Canada) and its vicinity, and were monitored three times per month over a 1-year period. Seven different modelling methods were tested for predicting geosmin in these sources. The comparison of the seven different models showed that simple models based on multi-linear regression provide sufficient predictive capacity with performance levels comparable to those obtained with artificial neural networks. The multi-linear regression model (R 2 = 0.657, <0.001) used only four variables (phaeophytin, sum of green algae, chlorophyll-a and potential Redox) in comparison with ten variables (potassium, heterotrophic bacteria, organic nitrogen, total nitrogen, phaeophytin, total organic carbon, sum of green algae, potential Redox, UV absorbance at 254 nm and atypical bacteria) for the best model obtained with artificial neural networks (R 2 = 0.843).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Geos = 3.136 + 1.88 (Phaeo) + 0.051(SGA) + 0.674(Chl-a) − 0.007(E).

Abbreviations

Geos:

Geosmin

OFC:

Off-flavour compound

Chl-a:

Chlorophyll-a

MLR:

Multi-linear regression

ANN:

Artificial neural network

MLP:

Multi-layer perceptron

PCR:

Principal component regression

T:

Temperature

pH:

Potential hydrogen

Cond:

Conductivity

DO:

Dissolve oxygen

E:

RedOx potential

NH4 :

Ammonia

Col:

Colour

SS:

Suspended solid

Turb:

Turbidity

Alk:

Alkalinity

Hard:

Hardness

UV:

Ultraviolet absorbance

TN:

Total nitrogen

Norg:

Organic nitrogen

TOC:

Total organic carbon

Phaeo:

Phaeophytin-a

AB:

Atypical bacteria

HB:

Heterotrophic bacteria

FC:

Faecal coliform

TC:

Total coliform

SGA:

Sum of green algae

SD:

Sum of diatoms

SC:

Sum of cyanobacteria

HS:

Headspace

SPME:

Solid-phase microextraction

GC:

Gas chromatography

PDMS\DVB\CAR:

Polydimethylsiloxane\divinylbenzen\carboxene

MDL:

Method detection limit

PCA:

Principal component analysis

PC:

Principal component

r :

Coefficient of correlation

KMO:

Kaiser–Meyer–Olkin

VIF:

Variation inflation factor

R²:

Coefficient of determination

R error:

Relative error

SA:

Sensitivity analysis

References

  • Aoyama, K., Kawamura, N., Saitoh, M., Magara, Y., & Ishibashi, Y. (1995). Interactions between bacteria free Anabaena macrospora clone and bacteria isolated from unialgal culture. Water Science and Technology, 31(11), 121–126.

    Article  Google Scholar 

  • Blevins, W. T., Schrader, K. K., & Saadoun, I. (1995). Comparative physiology of geosmin production by Streptomyces halstedii and Anabaena sp. Water Science and Technology, 31(11), 127–133.

    Article  CAS  Google Scholar 

  • Bowden, G. J., Dandy, G. C., & Maier, H. R. (2005). Input determination for neural network models in water resources applications. Part 1—background and methodology. Journal of Hydrology, 301(1–4), 75–92.

    Article  Google Scholar 

  • Bowerman, B. L., & O’Connell, R. (1990). Linear statistical models: An applied approach (Duxbury classic). Pacific Grove: Duxbury.

    Google Scholar 

  • Bowmer, K. H., Padovan, A., Oliver, R. L., Korth, W., & Ganf, G. G. (1992). Physiology of geosmin production by Anabaena circinalis isolated from the Murrumbidgee River, Australia. Water Science and Technology WSTED4, 25(2), 259–267.

    CAS  Google Scholar 

  • Bruchet, A. (1999). Solved and unsolved cases of taste and odor episodes in the files of inspector Cluzeau. Water Science and Technology, 40(6), 15–21.

    Article  CAS  Google Scholar 

  • Çamdevýren, H., Demýr, N., Kanik, A., & Keskýn, S. (2005). Use of principal component scores in multiple linear regression models for prediction of chlorophyll-a in reservoirs. Ecological Modelling, 181(4), 581–589.

    Article  Google Scholar 

  • Cho, K. H., Kang, J.-H., Ki, S. J., Park, Y., Cha, S. M., & Kim, J. H. (2009). Determination of the optimal parameters in regression models for the prediction of chlorophyll-a: A case study of the Yeongsan Reservoir, Korea. Science of the Total Environment, 407(8), 2536–2545.

    Article  CAS  Google Scholar 

  • Dionigi, C. P., & Ingram, D. A. (1994). Effects of temperature and oxygen concentration on geosmin production by Streptomyces tendae and Penicillium expansum. Journal of Agricultural and Food Chemistry, 42, 143–145.

    Article  CAS  Google Scholar 

  • Durrer, M., Zimmermann, U., & Jüttner, F. (1999). Dissolved and particle-bound geosmin in a mesotrophic lake (lake Zürich): Spatial and seasonal distribution and the effect of grazers. Water Research, 33(17), 3628–3636.

    Article  CAS  Google Scholar 

  • Dzialowski, A. R., Smith, V. H., Huggins, D. G., deNoyelles, F., Lim, N.-C., Baker, D. S., & Beury, J. H. (2009). Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Research, 43(11), 2829–2840.

    Article  CAS  Google Scholar 

  • Fernando, T. M. K. G., Maier, H. R., & Dandy, G. C. (2009). Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. Journal of Hydrology, 367(3–4), 165–176.

    Article  Google Scholar 

  • Fuks, D., Radić, J., Radić, T., Najdek, M., Blažina, M., Degobbis, D., & Smodlaka, N. (2005). Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Science of the Total Environment, 353(1–3), 178–188.

    Article  CAS  Google Scholar 

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(249), 260–264.

    Google Scholar 

  • Hayes, S. J., Hayes, K. P., & Robinson, B. S. (1991). Geosmin as an odorous metabolite in cultures of the free-living Amoeba Vanella species (Gymnoamoebia, Vanellidae). Journal of Protozoology, 38(1), 44–47.

    CAS  Google Scholar 

  • Hejazi, M. I., & Cai, X. (2009). Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm. Advances in Water Resources, 32(4), 582–593.

    Article  Google Scholar 

  • Juttner, F., & Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Applied and Environmental Microbiology, 73(14), 4395–4406.

    Article  CAS  Google Scholar 

  • Kulkarni, P., & Chellam, S. (2010). Disinfection by-product formation following chlorination of drinking water: Artificial neural network models and changes in speciation with treatment. Science of the Total Environment, 408(19), 4202–4210.

    Article  CAS  Google Scholar 

  • Larsen, T. O., & Frisvad, J. C. (1995). Characterization of volatile métabolites from 47 Penicillium taxa. Mycological Research, 99(10), 1153–1166.

    Article  CAS  Google Scholar 

  • Levallois, P., Grondin, J., & Gingras, S. (1999). Evaluation of consumer attitudes on taste and tap water alternatives in Quebec. Water Science and Technology, 40(6), 135–139.

    Article  Google Scholar 

  • Lund, J., Kipling, C., & LeCren, E. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia, 11, 143–170.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2001). Neural network based modelling of environmental variables: A systematic approach. Mathematical and Computer Modelling, 33(6), 669–682.

    Article  Google Scholar 

  • Maier, H. R., Morgan, N., & Chow, C. W. K. (2004). Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters. Environmental Modelling & Software, 19(5), 485–494.

    Article  Google Scholar 

  • Myers, B. A. (1990). A new model for handling input. ACM Transactions on Information Systems, 8(3), 289–320.

    Article  Google Scholar 

  • Naes, T., & Indahl, U. (1998). A unified description of classical classification methods for multicollinear data. Journal of Chemometrics, 12, 205–220.

    Article  CAS  Google Scholar 

  • Naes, H., & Post, A. F. (1988). Transient states of geosmin, pigments, carbohydrates and proteins in continuous cultures of Oscillatoria brevis induced by changes in nitrogen supply. Archives of Microbiology, 150, 333–337.

    Article  CAS  Google Scholar 

  • Oh, H.-M., Ahn, C.-Y., Lee, J.-W., Chon, T.-S., Choi, K. H., & Park, Y.-S. (2007). Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Ecological Modelling, 203(1–2), 109–118.

    Article  Google Scholar 

  • Özesmi, S. L., Tan, C. O., & Özesmi, U. (2006). Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecological Modelling, 195(1–2), 83–93.

    Article  Google Scholar 

  • Parinet, B., Lhote, A., & Legube, B. (2004). Principal component analysis: An appropriate tool for water quality evaluation and management-application to a tropical system. Ecological Modelling, 178(3–4), 295–311.

    Article  CAS  Google Scholar 

  • Parinet, J., Rodriguez, M. J., & Sérodes, J.-B. (2010). Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol). Water Research, 44, 5847–5856.

    Article  CAS  Google Scholar 

  • Parinet, J., Rodriguez, M. J., Sérodes, J.-B., & Proulx, F. (2011). Automated analysis of geosmin, 2-methyl-isoborneol, 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine and 2, 4, 6 trichloroanisole in water by SPME-GC-ITDMS/MS. International Journal of Environmental and Analytical Chemistry, 91(6), 505–515.

    Article  CAS  Google Scholar 

  • Peter, A., Köster, O., Schildknecht, A., & von Gunten, U. (2009). Occurrence of dissolved and particle-bound taste and odor compounds in Swiss lake waters. Water Research, 43(8), 2191–2200.

    Article  CAS  Google Scholar 

  • Rashash, D. M. C., Hoehn, R. C., Dietrich, A. M., Grizzard, T. J., & Parker, B. C. (1996). Identification and control of odorous algal metabolites. Denver: AWWA Research Foundation.

    Google Scholar 

  • Rodriguez, M. J., & Sérodes, J.-B. (1998). Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems. Environmental Modelling & Software, 14(1), 93–102.

    Article  Google Scholar 

  • Rosen, B. H., MacLeod, B. W., & Simpson, M. R. (1992). Accumulation and release of geosmin during the growth phases of Anabaena circinalis (Kutz.) Rabenhorst. Water Science and Technology WSTED4, 25(2), 185–190.

    CAS  Google Scholar 

  • Saadoun, I. M. K., Schrader, K. K., & Blevins, W. T. (2001). Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Water Research, 35(5), 1209–1218.

    Article  CAS  Google Scholar 

  • Schrader, K. K., & Blevins, W. T. (2001). Effect of carbon source, phosphorous concentration, and several micronutrients on biomass and geosmin production by Streptomyces halstedii. Journal of Industrial Microbiology and Biotechnology, 26(4), 241–247.

    Article  CAS  Google Scholar 

  • Sklenar, K. S., & Horne, A. J. (1999). Horizontal distribution of geosmin in a reservoir before and after copper treatment. Water Science and Technology, 40(6), 229–237.

    Article  CAS  Google Scholar 

  • Smith, V. H., Sieber-Denlinger, J., deNoyelles, F., Campell, S., Pan, S., Randtke, S. J., Blain, G., & Strasser, V. A. (2002). Managing taste and odor problems in a eutrophic drinking water reservoir. Journal of Lake and Reservoir Management, 18(4), 319–323.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practical of statistics in biological research. New York: W.H. Freeman and Company.

    Google Scholar 

  • Suffet, I. H., Khiari, D., & Bruchet, A. (1999). The drinking water taste and odor wheel for the millennium: Beyond geosmin and 2-methylisoborneol. Water Science and Technology, 40(6), 1–13.

    Article  CAS  Google Scholar 

  • Sugiura, N., Utsumi, M., Wei, B., Iwani, N., Okano, K., Kawauchi, Y., & Maekawa, T. (2004). Assessment for the complicated occurrence of nuisance odours from phytoplankton and environmental factors in a eutrophic lake. Journal of Lakes & Reservoirs: Research and Management, 9, 195–201.

    Article  CAS  Google Scholar 

  • Tsuchiya, Y., & Matsumoto, A. (1999). Characterization of Oscillatoria f. granulata producing 2-methylisoborneol and geosmin. Water Science and Technology, 40(6), 245–250.

    Article  CAS  Google Scholar 

  • Turgeon, S., Rodriguez, M. J., Thériault, M., & Levallois, P. (2004). Perception of drinking water in the Quebec City region (Canada): The influence of water quality and consumer location in the distribution system. Journal of Environmental Management, 70(4), 363–373.

    Article  Google Scholar 

  • Watson, S. B., & Ridal, J. (2004). Periphyton: A primary source of widespread and severe taste and odour. Water Science and Technology, 49(9), 33–39.

    CAS  Google Scholar 

  • Watson, S. B., Ridal, J., Zaitlin, B., & Lo, A. (2003). Odours from pulp mill effluent treatment ponds: The origin of significant levels of geosmin and 2-methylisoborneol (MIB). Chemosphere, 51(8), 765–773.

    Article  CAS  Google Scholar 

  • Wei, C.-H. (2001). Analysis of artificial neural network models for freeway ramp metering control. Artificial Intelligence in Engineering, 15(3), 241–252.

    Article  Google Scholar 

  • Yu, J. W., Zhao, Y. M., Yang, M., Lin, T. F., Guo, Z. H., Gu, J. N., Li, S., & Han, W. (2009). Occurrence of odour-causing compounds in different source waters of China. Journal of Water Supply: Research and Technology-AQUA, 58, 587–594.

    Article  CAS  Google Scholar 

  • Zaitlin, B., & Watson, S. B. (2006). Actinomycetes in relation to taste and odour in drinking water: Myths, tenets and truths. Water Research, 40(9), 1741–1753.

    Article  CAS  Google Scholar 

  • Zhang, Q., Cudrak, A., Shariff, R., & Stanley, S. (2004). Implementing artificial neural network models for real-time water colour forecasting in a water treatment plant. Journal of Environmental Engineering and Science, 3(S1), S15–S23.

    Article  Google Scholar 

  • Zimba, P. V., Dionigi, C. P., & Millie, D. F. (1999). Evaluating the relationship between photopigment synthesis and 2-methylisoborneol accumulation in cyanobacteria. Journal of Phycology, 35, 1422–1429.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Sciences and Engineering Research Council of Canada (NSERC) and the partners of the Drinking Water Research Chair of Université Laval (Quebec City, City of Lévis, Dessau and ITF Labs-Avensys) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel J. Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parinet, J., Rodriguez, M.J. & Sérodes, JB. Modelling geosmin concentrations in three sources of raw water in Quebec, Canada. Environ Monit Assess 185, 95–111 (2013). https://doi.org/10.1007/s10661-012-2536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2536-x

Keywords

Navigation