Skip to main content
Log in

Characterization of depth-related bacterial communities and their relationships with the environmental factors in the river sediments

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To better understand the bacterial processes in river sediments, it is necessary to investigate the depth-related bacterial communities in the whole sediment profile. Sediment samples were collected to a depth of 25 cm from the Pearl River. Bacterial abundance, activity, cell-specific respiration rate, and diversity were measured, respectively, by 4′, 6-diamidino-2-phenylindole direct count, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining, electron transport system by CTC reduction, and denaturing gradient gel electrophoresis analysis of 16S rRNA amplification fragments. Results showed that the bacterial metabolism activities decreased with the sediment depth. The total bacterial abundance was highest in the surface sediment with 65.1 × 107 cells g−1, and decreased to 11.1 × 107 cells g−1 below 20 cm in the sample location that suffered from heavy sewage inputs. The active bacteria accounted for 7.50–46.7% of the total bacterial number and decreased with the sediment depth. Electron transport system by the CTC reduction showed that bacterial respiration rate declined from 1.093 μmol CTC-formazan h−1 g−1 in the surface sediment to a half in the bottom sediment, while the cell-specific respiration increased significantly with the depth from 3.56 to 93.75 fmol CTC-formazan cell−1. The bacterial diversity also changed with the depth. Beta-Proteobacteria were the dominant species in the surface sediment, whereas Delta-Proteobacteria were the main species below 10 cm. Results of canonical correspondence analysis (CCA) indicated that the distribution of bacteria was affected by the combined effect of various dissolved inorganic matter, while the respiration rate was independent of the nutrient conditions. The specific bacterial distribution contributed to not only the nutrient cycle but also enhanced pollutant decomposition in sediment of the Pearl River. The results showed that some specific bacterial species had a strong activity in the deeper layers. Therefore, the metabolic functions of the deeper bacterial species should not be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altmann D, Stief P, Amann R, de Beer D, Schramm A (2003) In situ distribution and activity of nitrifying bacteria in freshwater sediment. Environ Microbiol 5:798–803. doi:10.1046/j.1469-2920.2003.00469.x

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial-cells without cultivation. Microbiol Rev 59:143–169

    CAS  Google Scholar 

  • Anders H, Kaetzke A, Kampfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the proteobacteria. Int J Syst Bacteriol 45:327–333. doi:10.1099/00207713-45-2-327

    Article  CAS  Google Scholar 

  • Beller HR (2005) Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans. Appl Environ Microb 71:2170–2174. doi:10.1128/Aem.71.4.2170-2174.2005

    Article  CAS  Google Scholar 

  • Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol 72:7767–7777. doi:10.1128/Aem.00946-06

    Article  CAS  Google Scholar 

  • Blazejak A, Schippers A (2010) High abundance of JS-1-and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. Fems Microbiol Ecol 72:198–207. doi:10.1111/j.1574-6941.2010.00838.x

    Article  CAS  Google Scholar 

  • Chan OC, Claus P, Casper P, Ulrich A, Lueders T, Conrad R (2005) Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149. doi:10.1111/j.1462-2920.2005.00790.x

    Article  CAS  Google Scholar 

  • Cheung KC, Poon BHT, Lan CY, Wong MH (2003) Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52:1431–1440. doi:10.1016/S0045-6535(03)00479-X

    Article  CAS  Google Scholar 

  • Chunleuchanon S, Sooksawang A, Teaumroong N, Boonkerd N (2003) Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand: population dynamics as affected by environmental factors. World J Microbiol Biotechnol 19:167–173. doi:10.1023/a:1023286823958

    Article  CAS  Google Scholar 

  • Cook PLM, Veuger B, Boer S, Middelburg JJ (2007) Effect of nutrient availability on carbon and nitrogen incorporation and flows through benthic algae and bacteria in near-shore sandy sediment. Aquat Microb Ecol 49:165–180. doi:10.3354/Ame01142

    Article  Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464. doi:10.1016/j.resmic.2005.01.011

    Article  CAS  Google Scholar 

  • Dang HY, Zhang XX, Sun J, Li TG, Zhang ZN, Yang GP (2008) Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiol-Sgm 154:2084–2095. doi:10.1099/mic.0.2007/013581-0

    Article  CAS  Google Scholar 

  • Duldhardt I, Nijenhuis I, Schauer F, Heipieper HJ (2007) Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria. Appl Microbiol Biot 77:705–711. doi:10.1007/s00253-007-1179-2

    Article  CAS  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30:973–980. doi:10.1016/j.envint.2004.03.001

    Article  CAS  Google Scholar 

  • Fagervold SK, Watts JEM, May HD, Sowers KR (2005) Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different Chloroflexi phylotypes. Appl Environ Microbiol 71:8085–8090. doi:10.1128/Aem.71.12.8085-8090.2005

    Article  CAS  Google Scholar 

  • Fischer H, Wanner SC, Pusch M (2002) Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochemistry 61:37–55

    Article  CAS  Google Scholar 

  • Francis CA, O’Mullan GD, Ward BB (2003) Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1:129–140. doi:10.1046/j.1472-4669.2003.00010.x

    Article  CAS  Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ Microbiol 8:684–696. doi:10.1111/j.1462-2920.2005.00947.x

    Article  CAS  Google Scholar 

  • Fu JM, Mai BX, Sheng GY, Zhang G, Wang XM, Peng PA, Xiao XM, Ran R, Cheng FZ, Peng XZ, Wang ZS, Tang UW (2003) Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52:1411–1422. doi:10.1016/S0045-6535(03)00477-6

    Article  CAS  Google Scholar 

  • Haglund AL, Tornblom E, Bostrom B, Tranvik L (2002) Large differences in the fraction of active bacteria in plankton, sediments, and biofilm. Microb Ecol 43:232–241. doi:10.1007/s00248-002-2005-0

    Article  CAS  Google Scholar 

  • Haglund AL, Lantz P, Tornblom E, Tranvik L (2003) Depth distribution of active bacteria and bacterial activity in lake sediment. Fems Microbiol Ecol 46:31–38. doi:10.1016/S0168-6496(03)00190-9

    Article  CAS  Google Scholar 

  • Hollibaugh JT, Wong PS, Bano N, Pak SK, Prager EM, Orrego C (2001) Stratification of microbial assemblages in Mono Lake, California, and response to a mixing event. Hydrobiologia 466:45–60

    Article  CAS  Google Scholar 

  • Jiang DM, Kato C, Zhou XW, Wu ZH, Sato T, Li YZ (2010) Phylogeographic separation of marine and soil myxobacteria at high levels of classification. Isme J 4:1520–1530. doi:10.1038/ismej.2010.84

    Article  Google Scholar 

  • Kellermann C, Griebler C (2009) Thiobacillus thiophilus sp nov., a chemolithoautotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Micr 59:583–588. doi:10.1099/Ijs.0.002808-0

    Article  CAS  Google Scholar 

  • Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jorgensen BB (2009) Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol 11:1278–1291. doi:10.1111/j.1462-2920.2008.01855.x

    Article  CAS  Google Scholar 

  • Letain TE, Kane SR, Legler TC, Salazar EP, Agron PG, Beller HR (2007) Development of a genetic system for the chemolithoautotrophic bacterium Thiobacillus denitrificans. Appl Environ Microbiol 73:3265–3271. doi:10.1128/Aem.02928-06

    Article  CAS  Google Scholar 

  • Miyatake T, MacGregor BJ, Boschker HTS (2009) Linking microbial community function to phylogeny of sulfate-reducing deltaproteobacteria in marine sediments by combining stable isotope probing with magnetic-bead capture hybridization of 16S rRNA. Appl Environ Microbiol 75:4927–4935. doi:10.1128/Aem.00652-09

    Article  CAS  Google Scholar 

  • Mosier AC, Francis CA (2008) Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 10:3002–3016. doi:10.1111/j.1462-2920.2008.01764.x

    Article  CAS  Google Scholar 

  • Ngiam LS, Lim PE (2001) Speciation patterns of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequential extraction schemes. Sci Total Environ 275:53–61

    Article  CAS  Google Scholar 

  • Polymenakou PN, Fragkioudaki G, Tselepides A (2007) Bacterial and organic matter distribution in the sediments of the Thracian Sea (NE Aegean Sea). Cont Shelf Res 27:2187–2197. doi:10.1016/j.csr.2007.05.003

    Article  Google Scholar 

  • Proctor LM, Souza AC (2001) Method for enumeration of 5-cyano-2, 3-ditoyl tetrazolium chloride (CTC)-active cells and cell-specific CTC activity of benthic bacteria in riverine, estuarine and coastal sediments. J Microbiol Meth 43:213–222

    Article  CAS  Google Scholar 

  • Rodriguez GG, Phipps D, Ishiguro K, Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol 58:1801–1808

    CAS  Google Scholar 

  • Romero MC, Gatti EM, Bruno DE (1999) Effects of heavy metals on microbial activity of water and sediment communities. World J Microbiol Biotechnol 15:179–184

    Article  Google Scholar 

  • Strous M, Jetten M (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 99–117. doi: 10.1146/annurev.micro.58.030603.123605

  • Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169. doi:10.1128/Aem.71.4.2162-2169.2005

    Article  CAS  Google Scholar 

  • Tammert H, Olli K, Sturluson M, Hodal H (2008) Bacterial biomass and activity in the marginal ice zone of the northern Barents Sea. Deep-Sea Res Pt Ii 55:2199–2209. doi:10.1016/j.dsr2.2008.05.011

    Article  CAS  Google Scholar 

  • Urakawa H, Yoshida T, Nishimura M, Ohwada K (2000) Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling. Environ Microbiol 2:542–554

    Article  CAS  Google Scholar 

  • Wankel SD, Kendall C, Francis CA, Paytan A (2006) Nitrogen sources and cycling in the San Francisco Bay Estuary: a nitrate dual isotopic composition approach. Limnol Oceanogr 51:1654–1664

    Article  CAS  Google Scholar 

  • Wilms R, Kopke B, Sass H, Chang TS, Cypionka H, Engelen B (2006) Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environ Microbiol 8:709–719. doi:10.1111/j.1462-2920.2005.00949.x

    Article  CAS  Google Scholar 

  • Wilms R, Sass H, Kopke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. Fems Microbiol Ecol 59:611–621. doi:10.1111/j.1574-6941.2006.00225.x

    Article  CAS  Google Scholar 

  • Wu X, Xi WY, Ye WJ, Yang H (2007) Bacterial community composition of a shallow hypertrophic freshwater lake in China, revealed by 16S rRNA gene sequences. Fems Microbiol Ecol 61:85–96. doi:10.1111/j.1574-6941.2007.00326.x

    Article  CAS  Google Scholar 

  • Xu P, Leff LG (2004) Longitudinal changes in the benthic bacterial community of the Mahoning River (Ohio, USA). Hydrobiologia 522:329–335

    Article  Google Scholar 

  • Ye WJ, Liu XL, Lin SQ, Tan J, Pan JL, Li DT, Yang H (2009) The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. Fems Microbiol Ecol 70:263–276. doi:10.1111/j.1574-6941.2009.00761.x

    Article  CAS  Google Scholar 

  • Zweifel UL, Hagstrom A (1995) Total counts of marine-bacteria include a large fraction of non-nucleoid-containing bacteria (Ghosts). Appl Environ Microbiol 61:2180–2185

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Chinese National Natural Science Foundation (Nos. 51039007 and 50779080) and the Yat-sen Innovative Talents Cultivation Program for Excellent Tutors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunhe Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Chen, C., Wu, Y. et al. Characterization of depth-related bacterial communities and their relationships with the environmental factors in the river sediments. World J Microbiol Biotechnol 27, 2655–2664 (2011). https://doi.org/10.1007/s11274-011-0739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0739-x

Keywords

Navigation