Skip to main content
Log in

Algal Response to Metal Oxide Nanoparticles: Analysis of Growth, Protein Content, and Fatty Acid Composition

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study was conducted to determine the impacts of ZnO-, CuO-, and Fe2O3-nanoparticles (NPs) on the growth, protein content, and fatty acid profile of the green microalga Nannochloropsis oculata. The growth of alga was inhibited by the increasing concentration of NPs in the order of CuO-NPs > ZnO-NPs > Fe2O3-NPs. Protein content went up in response to ZnO- and Fe2O3-NPs and decreased after exposure to CuO-NPs. The analysis of fatty acid profile revealed the negative effect of CuO- and Fe2O3-NPs on the content of saturated fatty acids (SFAs). By contrast, the content of SFAs was enhanced in the algal cells treated with ZnO-NPs. The level of unsaturated fatty acids (USFAs) was increased upon reflection to CuO-NPs, but it was reduced after treatment with ZnO- and Fe2O3-NPs. The analysis of biodiesel indicators showed that the cloud point (CP) can be increased considerably in the algal cells exposed to ZnO- and CuO-NPs. Intriguingly, the cold filter plugging point (CFPP) of biodiesel was remarkably elevated in the treated cells with Fe2O3-NPs. Taken all together, despite the toxicity caused by high concentrations of metal oxide NPs, NPs could raise the amount of CP and CFPP and improve the oxidative stability in N. oculata biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig  2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  PubMed  Google Scholar 

  2. Chang YN, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  PubMed Central  Google Scholar 

  3. Zaka M, Abbasi BH, Rahman I, Shah A, Zia M (2016) Synthesis and characterization of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa. IET Nanobiotechnol 10:134–140

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dimapilis EAS, Hsu CS, Mendoza RMO, Lu MS (2018) Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 28(2):47–56

    Article  CAS  Google Scholar 

  5. Fabrication S (2009) Characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci Polym 20:2129–2144

    Article  CAS  Google Scholar 

  6. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608

    Article  CAS  PubMed  Google Scholar 

  7. Zhou K, Wang R, Xu B, Li Y (2006) Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 17:3939–3943

    Article  CAS  Google Scholar 

  8. Bao S, Lu Q, Fang T, Dal H, Zhang C (2015) Assessment of the toxicity of CuO nanoparticles by using Saccharomyces cerevisiae mutants with multiple genes deleted. Appl Environ Microbiol 81:8098–8107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lei C, Zhang L, Yang K, Zhu L, Lin D (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:506–512

    Article  CAS  Google Scholar 

  10. He M, Yan Y, Pei F, Wu M, Gebreluel T, Zou S, Wang C (2017) Improvement on lipid production by Scenedesmus obliquus triggered by low dose exposure to nanoparticles. Sci Rep 7:15526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16:23929–23969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oijen TV, Leeuve M, Gieskes W, Barr H (2004) Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). Eur J Phycol 39:1469–4433

    Google Scholar 

  13. Gyana RR (2015) Role of iron in plant growth and metabolism. Reviews Agric Sci 3:1–24

    Article  Google Scholar 

  14. Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147

    Article  CAS  Google Scholar 

  15. Chen D, Zhang D, Yu JC, Chan KM (2011) Effects of Cu2O nanoparticles and CuCl2 on zebrafish larvae and a liver-cell line. Aquat Toxicol 105:344–355

    Article  CAS  PubMed  Google Scholar 

  16. Griffitt RJ, Lavelle CM, Kane AS, Denslow ND, Barber DS (2013) Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. Aquat Toxicol 130:192–200

    Article  PubMed  CAS  Google Scholar 

  17. Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M (2019) Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environ Sci Pollut Res 26:17499–17511

    Article  CAS  Google Scholar 

  18. Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F (2018) Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J Environ Sci 64:130–138

    Article  CAS  Google Scholar 

  19. Tarrahi R, Movafeghi A, Khataee A, Rezanejad F, Gohari G (2019) Evaluating the toxic impacts of cadmium selenide nanoparticles on the aquatic plant Lemna minor. Molecules 24(3):410–425

    Article  PubMed Central  CAS  Google Scholar 

  20. Singh S, Kate BN, Benerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae, An overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  21. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  22. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  23. Tzovenis I, De Pauw N, Sorgeloos P (2003) Optimization of T-ISO biomass production rich in essential fatty acids: I. Effect of different light regimes on growth and biomass production. Aquaculture 216:203–222

    Article  CAS  Google Scholar 

  24. Carracedo A, Cantley IC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13:227–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Apt KE, Behrens PW (1996) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  26. Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34:633–637

    Article  CAS  Google Scholar 

  27. Kleinübing SJ, Vieira RS, Beppu MM, Gurgel M, Silva C (2010) Characterization and evaluation of copper and nickel biosorption on acidic algae Sargassum filipendula. Mater Res 13:541–550

    Article  Google Scholar 

  28. Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicol Environ Saf 113:23–30

    Article  CAS  PubMed  Google Scholar 

  29. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7(72):248–257

    Article  Google Scholar 

  31. Miller L, Berger T (1985) Bacteria identification by gas chromatography of whole cell fatty acids. In: Hewlett-Packard Co, Application Note. Hewlett-Packard Co., Avondale, PA, pp 228–241

    Google Scholar 

  32. Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei HH, Mirzajanzadeh M, Shafaroudi SM, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Article  Google Scholar 

  33. Sarin A, Arora R, Singh NP, Sarin R, Malhotra RK, Kundu K (2009) Effect of blends of palm–Jatropha–Pongamia biodiesels on cloud point and pour point. Energy 34:2016–2021

    Article  CAS  Google Scholar 

  34. Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH (2012) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162

    Article  CAS  PubMed  Google Scholar 

  35. Choi O, Kanjun Deng K, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  PubMed  Google Scholar 

  36. Zhou H, Wang X, Zhou Y, Yao H, Ahmad F (2013) Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Anal Bioanal Chem 406:3689–3695

    Article  CAS  Google Scholar 

  37. Manzo S, Miglietta ML, Rametta G, Buono S, Francia GD (2013) Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 445-446:371–376

    Article  CAS  PubMed  Google Scholar 

  38. Wong SW, Leung PTY, Djurisić AB, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influence of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  PubMed  Google Scholar 

  39. Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructure on their toxicity to marine algae. Aquat Toxicol 102:186–196

    Article  CAS  PubMed  Google Scholar 

  40. Pendashteh H, Shariati F, Keshavarz A, Ramzanpour A (2013) Toxicity of ZnO nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus algae species. World J Fish Mar Sci 5:563–570

    Google Scholar 

  41. Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol:431–440

  42. Karimi R, Norastehnia A, Abbaspour H, Saeidisar S, Naeemi AS (2017) Toxicity assessment of Anabaena sp. following exposure to copper oxide nanoparticles and sodium chloride. J Appl Ecol Environ Res 15:2045–2059

    Article  Google Scholar 

  43. Ko KS, Koh DC, Kong IC (2018) Toxicity evaluation of individual and mixtures of nanoparticles based on algal chlorophyll content and cell count. Materials 11:1–10

    Article  CAS  Google Scholar 

  44. Yang J, Cao G, Xing G, Yuan H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    Article  CAS  PubMed  Google Scholar 

  45. Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Sturzenbaum SR (2014) Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 60:75–85

    Article  CAS  Google Scholar 

  46. Deng XY, Cheng J, Hu XL, Wang L, Li D, Gao K (2017) Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Sci Total Environ 575:87–96

    Article  CAS  PubMed  Google Scholar 

  47. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  48. Nascimento IA, Marques SSI, ICabanelas ITD, Pereira SA, Druzian JI, de Souza CO, Nascimento MA (2013) Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res 6:1–13

    Article  CAS  Google Scholar 

  49. Griffiths MJ, Harison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  50. Kang NK, Lee B, Choi GG, Moon M, Park MS, Lim J, Yang JW (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31:861–867

    Article  CAS  Google Scholar 

  51. Pádrová K, Lukavsky J, Nedbalova L, Cejkova A, Cajthaml T, Sigler K, Vitova M, Rezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Appl Phycol 27:1443–1451

    Article  CAS  Google Scholar 

  52. Verdoni N, Mench M, Cassagne C, Bessoule JJ (2011) Fatty acid composition of tomato leaves as biomarkers of metal-contaminated soils. Environ Toxicol Chem 20:382–388

    Article  Google Scholar 

  53. Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  54. Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our appreciation goes to Dr. M. Rahimzadeh because of her technical advices. The authors would thank the University of Hormozgan (grant No. 96/200/163) and the University of Tabriz for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasrin Fazelian or Morteza Yousefzadi.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazelian, N., Yousefzadi, M. & Movafeghi, A. Algal Response to Metal Oxide Nanoparticles: Analysis of Growth, Protein Content, and Fatty Acid Composition. Bioenerg. Res. 13, 944–954 (2020). https://doi.org/10.1007/s12155-020-10099-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10099-7

Keywords

Navigation