Skip to main content
Log in

Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity

  • REVIEWS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Microorganisms produce various volatile compounds, including volatile organic compounds and complex combinations of volatile compounds. The ecological and functional role of these compounds is presently the subject of intense study. Volatile organic compounds of microbial origin may possess antimicrobial properties, suppress or stimulate plant growth, and act as signals for long-distance communication between organisms (infochemicals), which propagate in the air and in aquatic solutions. Chemical diversity of volatile organic compounds of microbial origin provides a source of new compounds which may find application in medicine, biotechnology, and agriculture. Presently known bacterial volatile compounds, their structure, biosynthesis, and biological activity are discussed, with special emphasis on organic volatile compounds and their effect on bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Amavizca, E., Bashan, Y., Ryu, C.M., Farag, M.A., Bebout, B.M., and de-Bashan, L.E., Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus, Sci. Rep., 2017, vol. 7, p. 41310. https://doi.org/10.1038/srep41310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Audrain, B., Farag, M.A., Ryu, C.M., and Ghigo, J.M., Role of bacterial volatile compounds in bacterial biology, FEMS Microbiol. Rev., 2015, vol. 39, no. 2, pp. 222‒233.

    Article  CAS  PubMed  Google Scholar 

  3. Avalos, M., van Wezel, G.P., Raaijmakers, J.M., and Garbeva, P., Healthy scents: microbial volatiles as new frontier in antibiotic research?, Curr. Opin. Microbiol., 2018, vol. 45, pp. 84–91. https://doi.org/10.1016/j.mib.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  4. Bailly, A., Groenhagen, U., Schulz, S., Geisler, M., Eberl, L., and Weisskopf, L., The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling, Plant J., 2014, vol. 80, pp. 758–771.

    Article  CAS  PubMed  Google Scholar 

  5. Barraud, N., Kelso, M.J., Rice, S.A., and Kjelleberg, S., Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases, Curr. Pharm. Design, 2015, vol. 21, no. 1, pp. 31–42.

    Article  CAS  Google Scholar 

  6. Barraud, N., Schleheck, D., Klebensberger, J., Webb, J.S., Hassett, D.J., Rice, S.A., and Kjelleberg, S., Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal, J. Bacteriol., 2009, vol. 191, pp. 7333–7342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosch, R., and Smalla, K., Plant microbial diversity is suggested as the key to future biocontrol and health trends, FEMS Microbiol. Ecol., 2017, vol. 93, no. 5. https://doi.org/10.1093/femsec/fix050

  8. Bernier, S.P. and Surette, M.G., Concentration-dependent activity of antibiotics in natural environments, Front. Microbiol., 2013, vol. 4, no. 20. https://doi.org/10.3389/fmicb.2013.00020

  9. Bernier, S.P., Létoffé, S., Delepierre, M., and Ghigo, J.M., Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria, Mol. Microbiol., 2011, vol. 81, no. 3, pp. 705−716.

    Article  CAS  PubMed  Google Scholar 

  10. Bikov, A., Lázár, Z., and Horvath, I., Established methodological issues in electronic nose research: how far are we from using these instruments in clinical settings of breath analysis?, J. Breath. Res., 2015, vol. 9, no. 3, p. 034001. https://doi.org/10.1088/1752-7155/9/3/034001

    Article  PubMed  Google Scholar 

  11. Blom, D., Fabbri, C., Connor, E.C., Schiestl, F.P., Klauser, D.R., Boller, T., Eberl, L., and Weisskopf, L., Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions, Environ. Microbiol., 2011b, vol. 13, no. 11, pp. 3047‒3058.

    Article  CAS  PubMed  Google Scholar 

  12. Blom, D., Fabbri, C., Eberl, L., and Weisskopf, L., Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide, Appl. Environ. Microbiol., 2011a, vol. 77, no. 3, pp. 1000‒1008.

    Article  CAS  PubMed  Google Scholar 

  13. Bos, L.D., Sterk, P.J., and Schultz, M.J., Volatile metabolites of pathogens: a systematic review, PLoS Pathog., 2013, vol. 9, no. 5. e1003311. https://doi.org/10.1371/journal.ppat.1003311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buszewski, B., Rațiu, I.A., Milanowski, M., Pomastow-ski, P., and Ligor, T., The effect of biosilver nanoparticles on different bacterial strains’ metabolism reflected in their VOCs profiles, J. Breath Res., 2018, vol. 12, no. 2, p. 027105. https://doi.org/10.1088/1752-7163/aa820f

    Article  CAS  PubMed  Google Scholar 

  15. Cepl, J., Blahůšková, A., Cvrčková, F., and Markoš, A., Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation, FEMS Microbiol. Lett., 2014, vol. 354, no. 2, pp. 126‒132.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, X., Cordovez, V., Etalo, D.W., van der Voort, M., and Raaijmakers, J.M., Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25, Front. Plant Sci., 2016, vol. 7, p. 1706. https://doi.org/10.3389/fpls.2016.01706

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chernin, L., Toklikishvili, N., Ovadis, M., Kim, S., Ben-Ari, J., Khmel, I., and Vainstein, A., Quorum-sensing quenching by rhizobacterial volatiles, Environ. Microbiol. Rep., 2011, vol. 3, no. 6, pp. 698‒704.

    Article  CAS  PubMed  Google Scholar 

  18. Chimerel, C., Field, C.M., Piñero-Fernandez, S., Keyser, U.F., and Summers, D.K., Indole prevents Escherichia coli cell division by modulating membrane potential, Biochim. Biophys. Acta, 2012, vol. 1818, no. 7, pp. 1590‒1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cordovez, V., Carrion, V.J., Etalo, D.W., Mumm, R., Zhu, H., van Wezel, G.P., and Raaijmakers, J.M., Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil, Front. Microbiol., 2015, vol. 6, p. 1081. https://doi.org/10.3389/fmicb.2015.01081

    Article  PubMed  PubMed Central  Google Scholar 

  20. Craciun, S. and Balskus, E.P., Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme, Proc. Natl. Acad. Sci. U. S. A. 2012, vol. 109, no. 52, pp. 21307‒21312.

    Article  PubMed  PubMed Central  Google Scholar 

  21. D’Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J., and Turlings, T.C.J., Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions, Plant Cell Environ., 2014, vol. 37, pp. 813–826.

    Article  CAS  PubMed  Google Scholar 

  22. Dandurishvili, N., Toklikishvili, N., Ovadis, M., Eliashvili, P., Giorgobiani, N., Keshelava, R., Tediashvili, M., Vainstein, A., Khmel, I., Szegedi, E., and Chernin, L., Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants, J. Appl. Microbiol., 2011, vol. 110, no. 1, pp. 341‒352.

    Article  CAS  PubMed  Google Scholar 

  23. Davis, T.S., Crippen, T.L., Hofstetter, R.W., and Tomberlin, J.K. Microbial volatile emissions as insect semiochemicals, J. Chem. Ecol., 2013, vol. 39, no. 7, pp. 840‒859. https://doi.org/10.1007/s10886-013-0306-z

    Article  CAS  PubMed  Google Scholar 

  24. De Vrieze, M., Pandey, P., Bucheli, T.D., Varadarajan, A.R., Ahrens, C.H., Weisskopf, L., and Bailly, A., Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents, Front. Microbiol., 2015, vol. 6, p. 1295. https://doi.org/10.3389/fmicb.2015.01295

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dickschat, J.S., Wenzel, S.C., Bode, H.B., Müller, R., and Schulz, S., Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus, Chembiochem., 2004, vol. 5, no. 6, pp. 778‒787.

    Article  CAS  PubMed  Google Scholar 

  26. Dunn, A.K. and Stabb, E.V., Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114, J. Bacteriol., 2008, vol. 190, no. 17, pp. 5814‒5823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Effmert, U., Kalderas, J., Warnke, R., and Piechulla, B., Volatile mediated interactions between bacteria and fungi in the soil, J. Chem. Ecol., 2012, vol. 38, pp. 665–703.

    Article  CAS  PubMed  Google Scholar 

  28. Farag, M.A., Zhang, H., and Ryu, C.M., Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles, J. Chem. Ecol., 2013, vol. 39, no. 7, pp. 1007‒1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Field, C.M. and Summers, D.K., Indole inhibition of ColE1 replication contributes to stable plasmid maintenance, Plasmid, 2012, vol. 67, no. 2, pp. 88‒94.

    Article  CAS  PubMed  Google Scholar 

  30. Filippovich, S.Iu., Bacterial NO synthases, Biochemistry (Moscow), 2010, vol. 75, no. 10, pp. 1217‒1224.

    CAS  PubMed  Google Scholar 

  31. Forney, F.W. and Markovetz, A.J., The biology of methyl ketones, J. Lipid Res., 1971, vol. 12, no. 4, pp. 383‒395.

    CAS  PubMed  Google Scholar 

  32. Garbeva, P., Hol, W.H.G., Termorshuizen, A.J., Kowalchuk, G.A., and de Boer, W., Fungistasis and general soil biostasis—a new synthesis, Soil Biol. Biochem., 2011, vol. 4, no. 3, pp. 469–477.

    Article  CAS  Google Scholar 

  33. Garbeva, P., Hordijk, C., Gerards, S., and de Boer, W., Volatile-mediated interactions between phylogenetically different soil bacteria, Front. Microbiol., 2014a, vol. 11, p. 289. https://doi.org/10.3389/fmicb.2014.00289

    Article  Google Scholar 

  34. Garbeva, P., Hordijk, C., Gerards, S., and de Boer, W., Volatiles produced by the mycophagous soil bacterium Collimonas, FEMS Microbiol. Ecol., 2014b, vol. 8, no. 7, pp. 639–649.

    Article  CAS  Google Scholar 

  35. Giorgio, A., De Stradis, A., Lo Cantore, P., and Iacobel-lis, N.S., Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum, Front. Microbiol., 2015, vol. 6, p. 1056. https://doi.org/10.3389/fmicb.2015.01056

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gonda, I., Bar, E., Portnoy, V., Lev, S., Burger, J., Schaffer, A.A., Tadmor, Y., Gepstein, S., Giovannoni, J.J., Katzir, N., and Lewinsohn, E., Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit, J. Exp. Bot., 2010, vol. 61, no. 4, pp. 1111‒1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Groenhagen, U., Baumgartner, R., Bailly, A., Gardiner, A., Eberl, L., Schulz, S., and Weisskopf, L., Production of bioactive volatiles by different Burkholderia ambifaria strains, J. Chem. Ecol., 2013, vol. 39, no. 7, pp. 892‒906.

    Article  CAS  PubMed  Google Scholar 

  38. Gürtler, H., Pedersen, R., Anthoni, U., Christophersen, C., Nielsen, P.H., Wellington, E.M., Pedersen, C., and Bock, K., Albaflavenone, a sesquiterpene ketone with a zizaene skeleton produced by a streptomycete with a new rope morphology, J. Antibiot. (Tokyo), 1994, vol. 47, no. 4, pp. 434‒439.

    Article  PubMed  Google Scholar 

  39. Gusarov, I. and Nudler, E., NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 39, pp. 13855‒13860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gusarov, I., Shatalin, K., Starodubtseva, M., and Nudler, E., Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics, Science, 2009, vol. 325, no. 5946, pp. 1380‒1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hamilton-Kemp, T., Newman, M., Collins, R., Elgaali, H., Yu, K., and Archbold, D., Production of the long-chain alcohols octanol, decanol, and dodecanol by Escherichia coli, Curr. Microbiol., 2005, vol. 51, no. 2, pp. 82‒86.

    Article  CAS  PubMed  Google Scholar 

  42. Heal, R.D. and Parsons, A.T., Novel intercellular communication system in Escherichia coli that confers antibiotic resistance between physically separated populations, J. Appl. Microbiol., 2002, vol. 92, no. 6, pp. 1116‒1122.

    Article  CAS  PubMed  Google Scholar 

  43. Henares, B.M., Xu, Y., and Boon, E.M., A nitric oxide-responsive quorum sensing circuit in Vibrio harveyi regulates flagella production and biofilm formation, J. Mol. Sci., 2013, vol. 14, pp. 16473–16484.

    Article  CAS  Google Scholar 

  44. Hinton, A., Jr. and Hume, M.E., Synergism of lactate and succinate as metabolites utilized by Veillonella to inhibit the growth of Salmonella typhimurium and Salmonella enteritidis in vitro, Avian Dis., 1995, vol. 39, no. 2, pp. 309‒316.

    Article  PubMed  Google Scholar 

  45. Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., and Yamaguchi, A., Indole induces the expression of multidrug exporter genes in Escherichia coli, Mol. Microbiol., 2005, vol. 55, no. 4, pp. 1113‒1126.

    Article  CAS  PubMed  Google Scholar 

  46. Hunziker, L., Bonisch, D., Groenhagen, U., Bailly, A., Schulz, S., and Weisskopf, L., Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans, Appl. Environ. Microbiol., 2015, vol. 81, pp. 821–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones, S.E., Ho, L., Rees, C.A., Hill, J.E., Nodwell, J.R., and Elliot, M.A., Streptomyces exploration is triggered by fungal interactions and volatile signals, ELife, 2017, vol. 6. e21738. https://doi.org/10.7554/eLife.21738

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kai, M., Effmert, U., and Piechulla, B., Bacterial-plant-interactions: approaches to unravel the biological function of bacterial volatiles in the rhizosphere, Front. Microbiol., 2016, vol. 7, p. 108. https://doi.org/10.3389/fmicb.2016.00108

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B., Bacterial volatiles and their action potential, Appl. Microbiol. Biotechnol., 2009, vol. 81, pp. 1001–1012.

    Article  CAS  PubMed  Google Scholar 

  50. Kesarwani, M., Hazan, R., He, J., Que, Y.A., Apidianakis, Y., Lesic, B., Xiao, G., Dekimpe, V., Milot, S., Deziel, E., Lépine, F., and Rahme, L.G., A quorum sensing regulated small volatile molecule reduces acute virulence and promotes chronic infection phenotypes, PLoS Pathog., 2011, vol. 7, no. 8. e1002192. https://doi.org/10.1371/journal.ppat.1002192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J., Shin, B., Park, C., and Park, W., Indole-induced activities of β-lactamase and efflux pump confer ampicillin resistance in Pseudomonas putida KT2440, Front. Microbiol., 2017, vol. 8, p. 433. https://doi.org/10.3389/fmicb.2017.00433

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim, K.S., Lee, S., and Ryu, C.M., Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance, Nat. Commun., 2013, vol. 4, p. 1809. https://doi.org/10.1038/ncomms2789

    Article  CAS  PubMed  Google Scholar 

  53. Korpi, A., Järnberg, J., and Pasanen, A. L., Microbial volatile organic compounds, Crit. Rev. Toxicol., 2009, vol. 39, no. 2, pp. 139‒193. https://doi.org/10.1080/10408440802291497

    Article  CAS  PubMed  Google Scholar 

  54. Kyung, K.H. and Lee, Y.C., Antimicrobial activities of sulfur compounds derived from S-alk(en)yl-L-cysteine sulfoxides in Allium and Brassica, Food Rev. Int., 2001, vol. 17, pp. 183‒198.

    Article  CAS  Google Scholar 

  55. Lazazzara, V., Perazzolli, M., Pertot, I., Biasioli, F., Puopolo, G., and Cappellin, L., Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains, Microbiol. Res., 2017, vol. 201, pp. 52–62.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J.H. and Lee, J., Indole as an intercellular signal in microbial communities, FEMS Microbiol. Rev., 2010, vol. 34, no. 4, pp. 426‒444.

    Article  CAS  PubMed  Google Scholar 

  57. Lee, J.H., Kim, Y.G., Baek, K.H., Cho, M.H., and Lee, J., The multifaceted roles of the interspecies signalling molecule indole in Agrobacterium tumefaciens, Environ. Microbiol., 2015, vol. 17, no. 4, pp. 1234‒1244.

    Article  CAS  PubMed  Google Scholar 

  58. Lemfack, M.C., Gohlke, B.O., Toguem, S.M.T., Preissner, S., Piechulla, B., and Preissner, R., mVOC 2.0: a database of microbial volatiles, Nucleic Acids Res., 2017. https://doi.org/10.1093/nar/gkx1016

  59. Lemfack, M.C., Nickel, J., Dunkel, M., Preissner, R., and Piechulla, B., mVOC: a database of microbial volatiles, Nucl. Acid Res., 2014, vol. 42 https://doi.org/10.1093/nar/gkt1250

  60. Lemfack, M.C., Ravella, S.R., Lorenz, N., Kai, M., Jung, K., Schulz, S., and Piechulla, B., Novel volatiles of skin-borne bacteria inhibit the growth of Gram-positive bacteria and affect quorum-sensing controlled phenotypes of Gram-negative bacteria, Syst. Appl. Microbiol., 2016, vol. 39, no. 8, pp. 503‒515.

    Article  CAS  PubMed  Google Scholar 

  61. Letoffé, S., Audrain, B., Bernier, S.P., Delepierre, M., and Ghigo, J.M., Aerial exposure to the bacterial volatile compound trimethylamine modifies antibiotic resistance of physically separated bacteria by raising culture medium pH, MBio, 2014, vol. 5, no. 1. e00944-13. https://doi.org/10.1128/mBio.00944-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, N., Xu, Y., Hossain, S., Huang, N., Coursolle, D., Gralnick, J.A., and Boon, E.M., Nitric oxide regulation of cyclic di-GMP synthesis and hydrolysis in Shewanella woodyi, Biochemistry, 2012, vol. 51, pp. 2087–2099.

    Article  CAS  PubMed  Google Scholar 

  63. Lorenz, M.C. and Fink, G.R., Life and death in a macrophage: role of the glyoxylate cycle in virulence, Eukaryot Cell, 2002, vol. 1, no. 5, pp. 657‒662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Marilley, L. and Casey, M.G., Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains, J. Food Microbiol., 2004, vol. 90, no. 2, pp. 139‒159.

    Article  CAS  Google Scholar 

  65. Marvasi, M., Chen, C., Carrazana, M., Durie, I.A., and Teplitski, M., Systematic analysis of the ability of nitric oxide donors to dislodge biofilms formed by Salmonella enterica and Escherichia coli O157:H7, AMB Express, 2014, vol. 4, p. 42. https://doi.org/10.1186/s13568-014-0042-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mattila, J.T. and Thomas, A.C., Nitric oxide synthase: non-canonical expression patterns, Front. Immunol., 2014, vol. 5, p. 478. https://doi.org/10.3389/fimmu.2014.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McCrindle, S.L., Kappler, U., and McEwan, A.G., Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration, Adv. Microb. Physiol., 2005, vol. 50, pp. 147‒198.

    Article  CAS  PubMed  Google Scholar 

  68. Meldau, D.G., Meldau, S., Hoang, L.H., Underberg, S., Wunsche, H., and Baldwin, I.T., Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp. B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition, Plant Cell, 2013, vol. 25, pp. 2731–2747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Melkina, O.E., Khmel, I.A., Plyuta, V.A., Koksharova, O.A., and Zavilgelsky, G.B., Ketones 2-heptanone, 2-nonanone, and 2-undecanone inhibit DnaK-dependent refolding of heat-inactivated bacterial luciferases in Escherichia coli cells lacking small chaperon IbpB, Appl. Microbiol. Biotechnol., 2017, vol. 101, pp. 5765‒5771.

    Article  CAS  PubMed  Google Scholar 

  70. Mironov, A., Seregina, T., Nagornykh, M., Luhachack, L.G., Korolkova, N., Lopes, L.E., Kotova, V., Zavilgelsky, G., Shakulov, R., Shatalin, K., and Nudler, E., Mechanism of H2S-mediated protection against oxidative stress in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, no. 23, pp. 6022‒6027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Molina-Santiago, C., Daddaoua, A., Fillet, S., Duque, E., and Ramos, J.L., Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance, Environ. Microbiol., 2014, vol. 16, no. 5, pp. 1267‒1281.

    Article  CAS  PubMed  Google Scholar 

  72. Mückschel, B., Simon, O., Klebensberger, J., Graf, N., Rosche, B., Altenbuchner, J., Pfannstiel, J., Huber, A., and Hauer, B., Ethylene glycol metabolism by Pseudomonas putida, Appl. Environ. Microbiol., 2012, vol. 78, no. 24, pp. 8531‒8539. https://doi.org/10.1128/AEM.02062-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mueller, R.S., Beyhan, S., Saini, S.G., Yildiz, F.H., and Bartlett, D.H., Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae, J. Bacteriol, 2009, vol. 191, no. 11, pp. 3504‒3516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nawrocka, J., Małolepsza, U., Szymczak, K., and Szczech, M., Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25, Protoplasma, 2018, vol. 255, no. 1, pp. 359‒373.

    Article  CAS  PubMed  Google Scholar 

  75. Nijland, R. and Burgess, J.G., Bacterial olfaction, Biotechnol. J., 2010, vol. 5, no. 9, pp. 974‒977.

    Article  CAS  PubMed  Google Scholar 

  76. Nikaido, E., Giraud, E., Baucheron, S., Yamasaki, S., Wiedemann, A., Okamoto, K., Takagi, T., Yamaguchi, A., Cloeckaert, A., and Nishino, K., Effects of indole on drug resistance and virulence of Salmonella enterica serovar Typhimurium revealed by genome-wide analyses, Gut Pathog., 2012, vol. 4, no. 1, p. 5. https://doi.org/10.1186/1757-4749-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nikolaev, Yu.A., Prosser, J.I., and Wheatley, R.E., Regulation of the adhesion of Pseudomonas fluorescens cells to glass by extracellular volatile compounds, Microbiology (Moscow), 2000, vol. 69, no. 3, pp. 287‒290.

    Article  CAS  Google Scholar 

  78. Orlandini, V., Maida, I., Fondi, M., Perrin, E., Papaleo, M.C., Bosi, E., de Pascale, D., Tutino, M.L., Michaud, L., Lo Giudice, A., and Fani, R., Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds, Microbiol. Res., 2014, vol. 169, nos. 7−8, pp. 593‒601.

    Article  CAS  PubMed  Google Scholar 

  79. Ossowicki, A., Jafra, S., and Garbeva, P., The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482, PLoS One, 2017, vol. 12. e0174362. https://doi.org/10.1371/journal.pone.0174362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Papaleo, M.C., Romoli, R., Bartolucci, G., Maida, I., Perrin, E., Fondi, M., Orlandini, V., Mengoni, A., Emiliani, G., Tutino, M.L., Parrilli, E., de Pascale, D., Michaud, L., Lo Giudice, A., and Fani, R., Bioactive volatile organic compounds from Antarctic (sponges) bacteria, N. Biotechnol., 2013, vol. 30, no. 6, pp. 824‒838.

    Article  CAS  PubMed  Google Scholar 

  81. Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., and Schnitzler, J.P., Biogenic volatile emissions from the soil, Plant Cell Environ., 2014, vol. 37, no. 8, pp. 1866‒1891.

    Article  CAS  PubMed  Google Scholar 

  82. Pessi, G. and Haas, D., Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa, J. Bacteriol., 2000, vol. 182, pp. 6940‒6949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Piechulla, B. and Degenhardt, J., The emerging importance of microbial volatile organic compounds, Plant Cell Environ., 2014, vol. 37, no. 4, pp. 811‒812.

    Article  CAS  PubMed  Google Scholar 

  84. Piechulla, B., Lemfack, M.C., and Kai, M., Effects of discrete bioactive microbial volatiles on plants and fungi, Plant Cell Environ., 2017, vol. 40, pp. 2042–2067.

    Article  CAS  PubMed  Google Scholar 

  85. Plyuta, V., Lipasova, V., Popova, A., Koksharova, O., Kuznetsov, A., Szegedi, E., Chernin, L., and Khmel, I., Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms, APMIS, 2016, vol. 124, no. 7, pp. 586‒594.

    Article  CAS  PubMed  Google Scholar 

  86. Plyuta, V.A., Popova, A.A., Koksharova, O.A., Kuznetsov, A.E., and Khmel, I.A., The ability of natural ketones to interact with bacterial quorum sensing systems, Mol. Genet. Microbiol. Virol., 2014, no. 4, pp. 167‒171.

  87. Popova, A.A., Koksharova, O.A., Lipasova, V.A., Zaitseva, J.V., Katkova-Zhukotskaya, O.A., Eremina, S.Iu., Mironov, A.S., Chernin, L.S., and Khmel I.A., Inhibitory and toxic effects of volatiles emitted by strains of Pseudomonas and Serratia on growth and survival of selected microorganisms, Caenorhabditis elegans, and Drosophila melanogaster, Biomed. Res. Int., 2014, p. 125704. https://doi.org/10.1155/2014/125704

  88. Potter, A.J., Kidd, S.P., Edwards, J.L., Falsetta, M.L., Apicella, M.A., Jennings, M.P., and McEwan, A.G., Thioredoxin reductase is essential for protection of Neisseria gonorrhoeae against killing by nitric oxide and for bacterial growth during interaction with cervical epithelial cells, J. Infect. Dis., 2009, vol. 199, pp. 227–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Que, Y.A., Hazan, R., Strobel, B., Maura, D., He, J., Kesarwani, M., Panopoulos, P., Tsurumi, A., Giddey, M., Wilhelmy, J., Mindrinos, M.N., and Rahme, L.G., A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria, PLoS One, 2013, vol. 8, no. 12. e80140. https://doi.org/10.1371/journal.pone.0080140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rajer, F.U., Wu, H., Xie, Y., Xie, S., Raza, W., Tahir, H.A.S., and Gao, X., Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato, Microbiology, 2017, vol. 163, pp. 523–530.

    Article  CAS  PubMed  Google Scholar 

  91. Rajini, K.S., Sasikala, Ch., and Ramana, Ch.V., Reductive degradation of pyrazine-2-carboxylate by a newly isolated Stenotrophomonas sp. HCU1, Biodegradation, 2010, vol. 21, no. 5, pp. 801‒813.

    Article  CAS  PubMed  Google Scholar 

  92. Rath, M., Mitchell, T.R., and Gold, S.E., Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent, Microbiol. Res., 2018, vol. 208, pp. 76‒84.

    Article  CAS  PubMed  Google Scholar 

  93. Ratiu, I.A., Ligor, T., Bocos-Bintintan, V., Al-Suod, H., Kowalkowski, T., Rafińska, K., and Buszewski, B., The effect of growth medium on an Escherichia coli pathway mirrored into GC/MS profiles, J. Breath. Res., 2017, vol.  1, no. 3, p. 036012. https://doi.org/10.1088/1752-7163/aa7ba2

    Article  CAS  Google Scholar 

  94. Raza, W., Ling, N., Liu, D., Wei, Z., Huang, Q., and Shen, Q., Volatile organic compounds produced by Pseudomonas fluorescens WR-1 restrict the growth and virulence traits of Ralstonia solanacearum, Microbiol. Res., 2016a, vol. 192, pp. 103–113.

    Article  CAS  PubMed  Google Scholar 

  95. Raza, W., Ling, N., Yang, L., Huang, Q., and Shen, Q., Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9, Sci. Rep., 2016b, vol. 6, p. 24856. https://doi.org/10.1038/srep24856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Raza, W., Wang, J., Wu, Y., Ling, N., Wei, Z., Huang, Q., and Shen, Q., Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum, Appl. Microbiol. Biotechnol., 2016c, vol. 100, pp. 7639–7650.

    Article  CAS  PubMed  Google Scholar 

  97. Rui, Z., Li, X., Zhu, X., Liu, J., Domigan, B., Barr, I., Cate, J.H., and Zhang, W., Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase, Proc. Natl. Acad. Sci U. S. A., 2014, vol. 111, no. 51, pp. 18237‒18242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Pare, P.W., Bacterial volatiles induce systemic resistance in Arabidopsis, Plant Physiol., 2004, vol. 134, pp. 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Paré, P.W., and Kloepper, J.W., Bacterial volatiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 8, pp. 4927‒4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sadiq, H. and Jamil, N., Antagonistic behaviour of organic compounds from Bacillus species and Brevundimonas specie, Pak. J. Pharm. Sci., 2018, vol. 31, no. 3, pp. 919‒926.

    CAS  PubMed  Google Scholar 

  101. Sánchez-López, Á.M., Bahaji, A., De Diego, N., Baslam, M., Li, J., Muñoz, F.J., Almagro, G., García-Gómez, P., Ameztoy, K., Ricarte-Bermejo, A., Novák, O., Humplík, J.F., Spíchal, L., Doležal, K., Ciordia, S., et al., Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms, Plant. Physiol., 2016a, vol. 172, no. 3, pp. 1989‒2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sánchez-López, Á.M., Baslam, M., De Diego, N., Muñoz, F.J., Bahaji, A., Almagro, G., Ricarte-Bermejo, A., García-Gómez, P., Li, J., Humplík, J.F., Novák, O., Spíchal, L., Doležal, K., Baroja-Fernández, E., and Pozueta-Romero, J.,Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action, Plant Cell Environ., 2016b, vol. 39, no. 12, pp. 2592‒2608.

    Article  CAS  PubMed  Google Scholar 

  103. Santoro, M.V., Zygadlo, J., Giordano, W., and Banchio, E., Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita), Plant Physiol Biochem., 2011, vol. 49, no. 10, pp. 1177‒1182.

    Article  CAS  PubMed  Google Scholar 

  104. Schenkel, D., Lemfack, M.C., Piechulla, B., and Splivallo, R., A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles, Front. Plant. Sci., 2015, vol. 6, p. 707. https://doi.org/10.3389/fpls.2015.00707

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schmidt, R., Cordovez, V., de Boer, W., Raaijmakers, J., and Garbeva, P., Volatile affairs in microbial interactions, ISME J., 2015, vol. 9, no. 11, pp. 2329‒2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schmidt, R., Etalo, D.W., de Jager, V., Gerards, S., Zweers, H., de Boer, W., and Garbeva, P., Microbial small talk: volatiles in fungal-bacterial interactions, Front. Microbiol., 2016, vol. 6, p. 1495. https://doi.org/10.3389/fmicb.2015.01495

    Article  PubMed  PubMed Central  Google Scholar 

  107. Schöller, C.E., Gürtler, H., Pedersen, R., Molin, S., and Wilkins, K., Volatile metabolites from actinomycetes, J. Agric. Food Chem., 2002, vol. 50, no. 9, pp. 2615‒2621.

    Article  CAS  PubMed  Google Scholar 

  108. Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de Boer, W., and Garbeva, P., Calling from distance: attraction of soil bacteria by plant root volatiles, ISME J., 2018, vol. 12, no. 5, pp. 1252‒1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schulz-Bohm, K., Martín-Sánchez, L., and Garbeva, P., Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions, Front. Microbiol., 2017, vol. 8, p. 2484. https://doi.org/10.3389/fmicb.2017.02484

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schulz-Bohm, K., Zweers, H., de Boer, W., and Garbeva, P., A fragrant neighborhood: volatile mediated bacterial interactions in soil, Front. Microbiol., 2015, vol. 6, p. 1212. https://doi.org/10.3389/fmicb.2015.01212

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schulz, S. and Dickschat, J.S., Bacterial volatiles: the smell of small organisms, Nat. Prod. Rep., 2007, vol. 24, no. 4, pp. 814‒842.

    Article  CAS  PubMed  Google Scholar 

  112. Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E., H2S: a universal defense against antibiotics in bacteria, Science, 2011, vol. 334, no. 6058, pp. 986‒990.

    Article  CAS  PubMed  Google Scholar 

  113. Song, C., Schmidt, R., de Jager, V., Krzyzanowska, D., Jongedijk, E., Cankar, K., Beekwilder, J., van Veen, A., de Boer, W., van Veen, J.A., and Garbeva, P., Exploring the genomic traits of fungus-feeding bacterial genus Collimonas, BMC Genomics, 2015, vol. 16, p. 1103. https://doi.org/10.1186/s12864-015-2289-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stamm, I., Lottspeich, F., and Plaga W., The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development, Mol. Microbiol., 2005, vol. 56, no. 5, pp. 1386‒1395.

    Article  CAS  PubMed  Google Scholar 

  115. Tahir, H.A., Gu, Q., Wu, H., Niu, Y., Huo, R., and Gao, X., Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt, Sci. Rep., 2017a, vol. 7, p. 40481. https://doi.org/10.1038/srep40481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tahir, H.A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M.V., and Gao, X., Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2, Front. Microbiol., 2017b, vol. 8, p. 171. https://doi.org/10.3389/fmicb.2017.00171

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tellez, M.R., Schrader, K.K., and Kobaisy, M., Volatile components of the cyanobacterium Oscillatoria perornata (Skuja), J. Agric. Food Chem., 2001, vol. 49, no. 12, pp. 5989‒5992.

    Article  CAS  PubMed  Google Scholar 

  118. Throup, J., Winson, M.A., Bainton, N.J., Bycroft, B.W., Williams, P., and Stewart, G.S.A.B., Signaling in bacteria beyond luminescence, in Bioluminescence and Chemiluminescence: Fundamental and Applied Aspects, Campbell, A., Kricka, L., and Stanley, P., Eds., Chichester: Wiley, 1995, pp. 89‒92.

    Google Scholar 

  119. Timm, C.M., Lloyd, E.P., Egan, A., Mariner, R., and Karig, D., Direct growth of bacteria in headspace vials allows for screening of volatiles by gas chromatography mass spectrometry, Front. Microbiol., 2018, vol. 9, p. 491. https://doi.org/10.3389/fmicb.2018.00491

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tyc, O., de Jager, V.C.L., van den Berg, M., Gerards, S., Janssens, T.K.S., Zaagman, N., Kai, M., Svatos, A., Zweers, H., Hordijk, C., Besselink, H., de Boer, W., and Garbeva, P., Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds, Microb. Biotechnol., 2017a, vol. 10, pp. 910–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tyc, O., Song, C.X., Dickschat, J. S., Vos, M., and Garbeva, P., The ecological role of volatile and soluble secondary metabolites produced by soil bacteria, Trends Microbiol., 2017b, vol. 25, pp. 280–292.

    Article  CAS  PubMed  Google Scholar 

  122. Tyc, O., Wolf, A.B., and Garbeva, P., The effect of phylogenetically different bacteria on the fitness of Pseudomonas fluorescens in sand microcosms, PLoS One, 2015, vol. 10. e0119838. https://doi.org/10.1371/journal.pone.0119838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Van Agtmaal, M., Van Os, G.J., Hol, W.H., Hundscheid, M.P., Runia, W.T., Hordijk, C.A., and de Boer, W., Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles, Front. Microbiol., 2015, vol. 6, p. 701. https://doi.org/10.3389/fmicb.2015.00701

    Article  PubMed  PubMed Central  Google Scholar 

  124. Van Dam, N.M., Weinhold, A., and Garbeva, P., Calling in the dark: the role of volatiles for communication in the rhizosphere,in Deciphering Chemical Language of Plant Communication, Blande, J.D. and Glinwood, R., Eds., Springer, 2016, pp. 175–210.

    Google Scholar 

  125. Vega, N.M., Allison, K.R., Khalil, A.S., and Collins, J.J., Signaling-mediated bacterial persister formation, Nat. Chem. Biol., 2012, vol. 8, no. 5, pp. 431‒433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vega, N.M., Allison, K.R., Samuels, A.N., Klempner, M.S., and Collins, J.J., Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, no. 35, pp. 14420‒14425.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Venkataraman, A., Rosenbaum, M.A., Werner, J.J., Winans, S.C., and Angenent, L.T., Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa, ISME J., 2014, vol. 8, pp. 1210–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Volatiles and Food Security. Role of Volatiles in Agro-Ecosystems, Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., and Tuteja, N., Eds., Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-5553-9

    Google Scholar 

  129. Wei, H.L. and Zhang, L.Q., Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24, Antonie van Leeuwenhoek, 2006, vol. 89, pp. 267‒280.

    Article  PubMed  Google Scholar 

  130. Weise, T., Kai, M., Gummesson, A., Troeger, A., von Reuß, S., Piepenborn, S., Kosterka, F., Sklorz, M., Zimmermann, R., Francke, W., and Piechulla, B., Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85-10, Beilstein J. Org. Chem., 2012, vol. 8, pp. 579‒596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wenke, K., Wanke, D., Kilian, J., Berendzen, K., Harter, K., and Piechulla, B., Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function, Plant J., 2012, vol. 70, pp. 445–459.

    Article  CAS  PubMed  Google Scholar 

  132. Westhoff, S., van Wezel, G.P., and Rozen, D.E., Distance-dependent danger responses in bacteria, Curr. Opin. Microbiol., 2017, vol. 36, pp. 95–101.

    Article  PubMed  Google Scholar 

  133. Wheatley, R.E., The consequences of volatile organic compound mediated bacterial and fungal interactions, Antonie van Leeuwenhoek, 2002, vol. 81, nos. 1−4, pp. 357‒364.

    Article  CAS  PubMed  Google Scholar 

  134. Whiteson, K.L., Meinardi, S., Lim, Y.W., Schmieder, R., Maughan, H., Quinn, R., Blake, D.R., Conrad, D., and Rohwer, F., Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation, ISME J., 2014, vol. 8, no. 6, pp. 1247‒1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wintermans, P.C.A., Bakker, P.A.H.M., and Pieterse, C.M.J., Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria, Plant Mol. Biol., 2016, vol. 90, pp. 623–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wrigley, D.M., Inhibition of Clostridium perfringens sporulation by Bacteroides fragilis and short-chain fatty acids, Anaerobe, 2004, vol. 10, no. 5, pp. 295‒300.

    Article  CAS  PubMed  Google Scholar 

  137. Xie, S., Zang, H., Wu, H., Uddin Rajer, F.U., and Gao, X., Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae, Mol. Plant Pathol., 2016, vol. 19, no. 1, pp. 49‒58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yung, P.Y., Grasso, L.L., Mohidin, A.F., Acerbi, E., Hinks, J., Seviour, T., Marsili, E., and Lauro, F.M., Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds, Sci. Rep., 2016, vol. 6, p. 19899. https://doi.org/10.1038/srep19899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhu, Y., Jameson, E., Crosatti, M., Schäfer, H., Rajakumar, K., Bugg, T.D., and Chen Y., Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 11, pp. 4268‒4273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

FUNDING

The work was partially supported by the Russian Foundation for Basic Research, projects nos. 18-04-00375-a and 18-34-00396-mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khmel.

Ethics declarations

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselova, M.A., Plyuta, V.A. & Khmel, I.A. Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity. Microbiology 88, 261–274 (2019). https://doi.org/10.1134/S0026261719030160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719030160

Keywords:

Navigation