Skip to main content
Log in

Changes in the fatty acid composition of symbiotic dinoflagellates from the hermatypic coral Echinopora lamellosa during adaptation to the irradiance level

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The composition of fatty acids (FAs) of symbiotic dinoflagellates isolated from the hermatypic coral Echinoporal lamellosa adapted to the irradiance of 95, 30, 8, and 2% PAR was studied. Polar lipids and triacylglycerols (TAG) differed between them in FA composition. Polar lipids were enriched in unsaturated FAs, whereas TAG, in saturated FAs. Light exerted a substantial influence on the FA composition in both polar lipids and TAG. The elevation of irradiance resulted in the accumulation of 16:0 acid in both lipid groups and 16:1(n-7) acid in TAG. It seems likely that de novo synthesis of 16:0 acid occurred actively in the cells of symbiotic dinoflagellates in high light. Since these processes are energy-consuming ones, they utilize excessive energy. When light intensity declined, 18:4(n-3) and 20:5(n-3) acids accumulated in polar lipids, which was accompanied by the increase in the content of chlorophyll a in the cells of zooxanthellae, whereas the levels of 22:6(n-3) and 20:4(n-6) acids reduced. Although the relative content of particular FAs varied substantially in dependence of irradiance, the balance between the sum of saturated and unsaturated FAs changed insignificantly. We concluded that the role of photoadaptation could not be limited only to changes in the degree of lipid unsaturation and membrane fluidity. It is supposed that light-induced changes in the FA composition reflect the interrelation between photosynthesis and FA biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA:

fatty acid

FAME:

FA methyl esters

PAR:

photosynthetically active radiation

R t :

retention time

SD:

symbiotic dinoflagellates

TAG:

triacylglycerols

References

  1. Sukenik, A., Carmeli, Y., and Berner, T., Regulation of Fatty Acid Composition by Irradiance Level in the Eustigmatophyte Nannochloropsis sp, J. Phycol., 1989, vol. 25, pp. 686–692.

    Article  CAS  Google Scholar 

  2. Richardson, K., Beardall, J., and Raven, J.A., Adaptation of Unicellular Algae to Irradiance: An Analysis of Strategies, New Phytol., 1983, vol. 93, pp. 157–191.

    Article  Google Scholar 

  3. Sukenik, A. and Carmeli, Y., Lipid Synthesis and Fatty Acid Composition in Nannochloropsis sp. (Eustigmatophyceae) Grown in a Light-Dark Cycle, J. Phycol., 1990, vol. 26, pp. 463–469.

    Article  CAS  Google Scholar 

  4. Napolitano, G.E., The Relationship of Lipids with Light and Chlorophyll Measurements in Freshwater Algae and Periphyton, J. Phycol., 1994, vol. 30, pp. 943–950.

    Article  CAS  Google Scholar 

  5. Thompson, P.A., Harrison, P.J., and Whyte, J.N.C., Influence of Irradiance on the Fatty Acid Composition of Phytoplankton, J. Phycol., 1990, vol. 26, pp. 278–288.

    Article  CAS  Google Scholar 

  6. Brown, M.R., Dunstan, G.A., Norwood, S.J., and Miller, K.A., Effect of Harvest Stage and Light on the Biochemical Composition of the Diatom Thalassiosira pseudonana, J. Phycol., 1996, vol. 32, pp. 64–73.

    Article  CAS  Google Scholar 

  7. Parrish, C.C., Bodennec, G., and Gentien, P., Time Courses of Intracellular and Extracellular Lipid Classes in Batch Cultures of the Toxic Dinoflagellates, Gymnodinium cf. nagasakiense, Mar. Chem., 1994, vol. 48, pp. 71–82.

    Article  CAS  Google Scholar 

  8. Patton, J.S. and Burris, J.E., Lipid Synthesis and Extrusion by Freshly Isolated Zooxanthellae (Symbiotic Algae), Mar. Biol., 1983, vol. 75, pp. 131–136.

    Article  CAS  Google Scholar 

  9. Muller-Parker, G., Lee, K.W., and Cook, C.B., Changes in the Structure of Symbiotic Zooxanthellae (Symbiodinium sp., Dinophyceae) in Fed and Starved Sea Anemones Maintained under High and Low Light, J. Phycol., 1996, vol. 32, pp. 987–994.

    Article  Google Scholar 

  10. Titlyanov, E.A., Titlyanova, T.V., Amat, A., and Yamazato, K., Morphophysiological Variations of Symbiotic Dinoflagellates in Hermatypic Corals from a Fringing Reef at Sesoko Island, Galaxea, JCRS, 2001, vol. 3, pp. 51–63.

    Google Scholar 

  11. Trench, R.K., Diversity of Symbiotic Dinoflagellates and the Evolution Microalgal-Invertebrates Symbiosis, Proc. 8th Int. Coral Reef Symp., 1997, vol. 2, pp. 1275–1286.

    Google Scholar 

  12. Zhukova, N.V. and Tilyanov, E.A., Fatty Acid Variations in Symbiotic Dinoflagellates from Okinawan Corals, Phytochemistry, 2003, vol. 62, pp. 191–195.

    Article  PubMed  CAS  Google Scholar 

  13. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    PubMed  CAS  Google Scholar 

  14. Carreau, J.P. and Dubacq, J.P., Adaptation of Macro-Scale Method to the Micro-Scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384–390.

    Article  CAS  Google Scholar 

  15. Christie, W.W., Equivalent Chain Lengths of Methyl Ester Derivatives of Fatty Acids on Gas Chromatography: A Reappraisal, J. Chromatogr., 1988, vol. 447, pp. 305–314.

    Article  CAS  Google Scholar 

  16. Dudley, P.A. and Anderson, R.E., Separation of Polyunsaturated Fatty Acids by Argentation Thin-Layer Chromatography, Lipids, 1975, vol. 10, pp. 113–115.

    Article  PubMed  CAS  Google Scholar 

  17. Mansour, M.P., Volkman, J.K., Jackson, A.E., and Blackburn, S.I., The Fatty Acid and Sterol Composition of Five Marine Dinoflagellates, J. Phycol., 1999, vol. 35, pp. 710–720.

    Article  CAS  Google Scholar 

  18. Hodgson, P.A., Hendeson, R.J., Sargent, J.R., and Leftley, J.W., Patterns of Variation in the Lipid Class and Fatty Acid Composition of Nannochloropsis oculata (Eustigmatophyceae) during Batch Culture: 1. The Growth Cycle, J. Appl. Phycol., 1991, vol. 3, pp. 169–181.

    Article  CAS  Google Scholar 

  19. Bell, M.B., Dick, J.R., and Pond, D.W., Octadecapentaenoic Acid in a Raphidophyte Alga, Heterosigma akashimo, Phytochemistry, 1997, vol. 45, pp. 303–306.

    Article  CAS  Google Scholar 

  20. Harwood, J. and Russell, N., Lipids in Plants and Microbes, London: George Allen and Uniwin, 1984.

    Google Scholar 

  21. Sicko-Goad, L., Simmons, M.S., Lazinsky, D., and Hall, J., Effect of Light Cycles on Diatom Fatty Acid Composition and Quantitative Morphology, J. Phycol., 1988, vol. 24, pp. 1–7.

    Article  CAS  Google Scholar 

  22. Brown, M.R., Dunstan, G.A., Jeffrey, S.W., Volkman, J.K., Barrett, S.M., and Leroi, J.M., The Influence of Irradiance on the Biochemical Composition of the Prymnesiophyte Isochrysis sp. (Clone T-ISO), J. Phycol., 1993, vol. 29, pp. 601–612.

    Article  CAS  Google Scholar 

  23. Klyachko-Gurvich, G.L., Pronina, N.A., Ladygin, V.G., Tsoglin, L.N., and Semenenko, V.E., Uncoupled Functioning of Separate Photosystems: 1. Characteristics of Fatty Acid Desaturation and Its Role, Russ. J. Plant Physiol., 2000, vol. 47, pp. 688–698.

    Google Scholar 

  24. Klyachko-Gurvich, G.L., Tsoglin, L.N., Doucha, J., Kopetskii, J., Shebalina, I.B., and Semenenko, V.E., Desaturation of Fatty Acids as an Adaptive Response to Shifts in Light Intensity, Physiol. Plant., 1999, vol. 107, pp. 240–249.

    Article  CAS  Google Scholar 

  25. Ohrlogge, J. and Browse, J., Lipid Biosynthesis, Plant Cell, 1995, vol. 7, pp. 957–970.

    Google Scholar 

  26. Blanchemain, A. and Grizeau, D., Eicosapentaenoic Acid Content of Sceletonema costatum as a Function of Growth and Irradiance: Relation with Chlorophyll a Content and Photosynthetic Capacity, J. Exp. Mar. Biol. Ecol., 1996, vol. 196, pp. 177–188.

    Article  CAS  Google Scholar 

  27. Cohen, Z., Vonshak, A., and Richmond, A., Effect of Environmental Conditions on Fatty Acid Composition of the Red Alga Porphyridium cruentum: Correlation to Growth Rate, J. Phycol., 1988, vol. 24, pp. 328–332.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Zhukova.

Additional information

Original Russian Text © N.V. Zhukova, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 6, pp. 856–863.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukova, N.V. Changes in the fatty acid composition of symbiotic dinoflagellates from the hermatypic coral Echinopora lamellosa during adaptation to the irradiance level. Russ J Plant Physiol 54, 763–769 (2007). https://doi.org/10.1134/S1021443707060076

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707060076

Key words

Navigation