skip to main content
10.1145/2406367.2406372acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmumConference Proceedingsconference-collections
research-article

A mobile indoor navigation system interface adapted to vision-based localization

Published:04 December 2012Publication History

ABSTRACT

Vision-based approaches for mobile indoor localization do not rely on the infrastructure and are therefore scalable and cheap. The particular requirements to a navigation user interface for a vision-based system, however, have not been investigated so far.

Such mobile interfaces should adapt to localization accuracy, which strongly relies on distinctive reference images, and other factors, such as the phone's pose. If necessary, the system should motivate the user to point at distinctive regions with the smartphone to improve localization quality.

We present a combined interface of Virtual Reality (VR) and Augmented Reality (AR) elements with indicators that help to communicate and ensure localization accuracy. In an evaluation with 81 participants, we found that AR was preferred in case of reliable localization, but with VR, navigation instructions were perceived more accurate in case of localization and orientation errors. The additional indicators showed a potential for making users choose distinctive reference images for reliable localization.

References

  1. M. Angermann and P. Robertson. Footslam: Pedestrian simultaneous localization and mapping without exteroceptive sensors---hitchhiking on human perception and cognition. Proceedings of the IEEE, 100(13):1840--1848, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. Azuma. A survey of augmented reality. Presence-Teleoperators and Virtual Environments, MIT Press, 6(4):355--385, 1997.Google ScholarGoogle Scholar
  3. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre. Recent advances in augmented reality. Computer Graphics and Applications, IEEE, 21(6):34--47, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. G. Baatz, K. Köser, D. Chen, R. Grzeszczuk, and M. Pollefeys. Leveraging 3D city models for rotation invariant place-of-interest recognition. International Journal of Computer Vision, 96(3):315--334, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. J. Baus, A. Krüger, and W. Wahlster. A resource-adaptive mobile navigation system. In Proceedings of the 7th international conference on Intelligent user interfaces, pages 15--22. ACM, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. A. Butz, J. Baus, A. Krüger, and M. Lohse. A hybrid indoor navigation system. In Proceedings of the 6th international conference on Intelligent user interfaces, pages 25--32. ACM, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. D. Chen, G. Baatz, K. Köser, S. Tsai, R. Vedantham, T. Pylvanainen, K. Roimela, X. Chen, J. Bach, M. Pollefeys, B. Girod, and R. Grzeszczuk. City-scale landmark identification on mobile devices. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 737--744, Colorado Springs, USA, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Chen. Quicktime VR: An image-based approach to virtual environment navigation. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, pages 29--38. ACM, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Fritz, C. Seifert, and L. Paletta. A mobile vision system for urban detection with informative local descriptors. In IEEE International Conference on Computer Vision Systems (ICVS'06), pages 30--30. IEEE, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. H. Hile and G. Borriello. Positioning and orientation in indoor environments using camera phones. Computer Graphics and Applications, IEEE, 28(4):32--39, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Hile, R. Vedantham, G. Cuellar, A. Liu, N. Gelfand, R. Grzeszczuk, and G. Borriello. Landmark-based pedestrian navigation from collections of geotagged photos. In Proceedings of the 7th International Conference on Mobile and Ubiquitous Multimedia, pages 145--152. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. S. Hilsenbeck, A. Möller, R. Huitl, G. Schroth, M. Kranz, and E. Steinbach. Scale-preserving long-term visual odometry for indoor navigation. In International Conference on Indoor Positioning and Indoor Navigation (IPIN), 2012.Google ScholarGoogle ScholarCross RefCross Ref
  13. H. Huang and G. Gartner. A survey of mobile indoor navigation systems. Cartography in Central and Eastern Europe, pages 305--319, 2010.Google ScholarGoogle Scholar
  14. R. Huitl, G. Schroth, S. Hilsenbeck, F. Schweiger, and E. Steinbach. TUMindoor: An extensive image and point cloud dataset for visual indoor localization and mapping. In IEEE ICIP, Miami, USA, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  15. M. Kalkusch, T. Lidy, N. Knapp, G. Reitmayr, H. Kaufmann, and D. Schmalstieg. Structured visual markers for indoor pathfinding. In Augmented Reality Toolkit, The First IEEE International Workshop, pages 8--pp. IEEE, 2002.Google ScholarGoogle Scholar
  16. T. Kolbe. Augmented videos and panoramas for pedestrian navigation. In Geowissenschaftliche Mitteilungen. Citeseer, 2003.Google ScholarGoogle Scholar
  17. M. Kranz, C. Fischer, and A. Schmidt. A comparative study of DECT and WLAN signals for indoor localization. In IEEE International Conference on Pervasive Computing and Communications (PerCom), pages 235--243. IEEE, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  18. C. Kray, C. Elting, K. Laakso, and V. Coors. Presenting route instructions on mobile devices. In Proceedings of the 8th international conference on Intelligent user interfaces, pages 117--124. ACM, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. A. Liu, H. Hile, H. Kautz, G. Borriello, P. Brown, M. Harniss, and K. Johnson. Indoor wayfinding: Developing a functional interface for individuals with cognitive impairments. Disability & Rehabilitation: Assistive Technology, 3(1--2):69--81, 2008.Google ScholarGoogle Scholar
  20. H. Liu, H. Darabi, P. Banerjee, and J. Liu. Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(6):1067--1080, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. Liu, X. Sun, N. Georganas, and E. Dubois. Augmented reality: a novel approach for navigating in panorama-based virtual environments (PBVE). In 2nd IEEE International Workshop on Haptic, Audio and Visual Environments and Their Applications (HAVE), pages 13--18. IEEE, 2003.Google ScholarGoogle Scholar
  22. D. Lowe. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, volume 2, pages 1150--1157. IEEE, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Menzel, M. Königs, and L. Kobbelt. A framework for vision-based mobile ar applications. In Proceedings of the Workshop on Mobile Vision and HCI (MobiVis). Held in Conjunction with Mobile HCI, 2012.Google ScholarGoogle Scholar
  24. D. Merico and R. Bisiani. Indoor navigation with minimal infrastructure. In 4th Workshop on Positioning, Navigation and Communication (WPNC'07), pages 141--144. IEEE, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  25. T. Miyashita, P. Meier, T. Tachikawa, S. Orlic, T. Eble, V. Scholz, A. Gapel, O. Gerl, S. Arnaudov, and S. Lieberknecht. An augmented reality museum guide. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pages 103--106. IEEE Computer Society, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Y. Miyazaki and T. Kamiya. Pedestrian navigation system for mobile phones using panoramic landscape images. In International Symposium on Applications and the Internet (SAINT 2006). IEEE, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Möller, S. Diewald, L. Roalter, and M. Kranz. MobiMed: Comparing Object Identification Techniques on Smartphones. In Proceedings of the 7th Nordic Conference on Human-Computer Interaction (NordiCHI 2012), pages 31--40, Copenhagen, Denmark, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Möller, C. Kray, L. Roalter, S. Diewald, R. Huitl, and M. Kranz. Tool Support for Prototyping Interfaces for Vision-Based Indoor Navigation. In Proceedings of the Workshop on Mobile Vision and HCI (MobiVis). Held in Conjunction with Mobile HCI, 2012.Google ScholarGoogle Scholar
  29. A. Mulloni, D. Wagner, I. Barakonyi, and D. Schmalstieg. Indoor positioning and navigation with camera phones. Pervasive Computing, IEEE, 8(2):22--31, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. W. Narzt, G. Pomberger, A. Ferscha, D. Kolb, R. Müller, J. Wieghardt, H. Hörtner, and C. Lindinger. Augmented reality navigation systems. Universal Access in the Information Society, 4(3):177--187, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. G. Schroth, R. Huitl, D. Chen, M. Abu-Alqumsan, A. Al-Nuaimi, and E. Steinbach. Mobile visual location recognition. IEEE Signal Processing Magazine, 28(4):77--89, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  32. B. Walther-Franks and R. Malaka. Evaluation of an augmented photograph-based pedestrian navigation system. In Smart Graphics, pages 94--105. Springer, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. M. Werner, M. Kessel, and C. Marouane. Indoor positioning using smartphone camera. In International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1--6. IEEE, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  34. O. Woodman and R. Harle. Pedestrian localisation for indoor environments. In Proceedings of the 10th international conference on Ubiquitous computing, pages 114--123. ACM, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A mobile indoor navigation system interface adapted to vision-based localization

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      MUM '12: Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia
      December 2012
      383 pages
      ISBN:9781450318150
      DOI:10.1145/2406367

      Copyright © 2012 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 December 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      Overall Acceptance Rate190of465submissions,41%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader