Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

PHYBAL — Kurzzeitverfahren zur Berechnung der Lebensdauer metallischer Werkstoffe auf der Basis physikalischer Messgrößen

Gewidmet Herrn Prof. Dr.-Ing. Erwin Roeder zur Vollendung seines 80. Lebensjahres

  • Frank Walther and Dietmar Eifler
From the journal Materials Testing

Kurzfassung

Zur mikrostrukturbasierten Charakterisierung des Ermüdungsverhaltens und zur Berechnung der Lebensdauer metallischer Werkstoffe werden neben mechanischen Spannung-Dehnung-Hysteresismessungen, hochgenaue Temperatur- und elektrische Widerstandsmessverfahren eingesetzt. Im Rahmen eines am Lehrstuhl für Werkstoffkunde der TU Kaiserslautern entwickelten Versuchskonzeptes werden in Betriebslastfolgen kurze einstufige Messsequenzen mit einer Spannungsamplitude deutlich unterhalb der Wechselfestigkeit eingefügt. Die erfassten Messgrößen werden äquivalent zu Einstufenversuchen in Wechselverformungskurven zur Bewertung verformungsinduzierter mikrostruktureller Veränderungen und fortschreitender Ermüdungsschädigung unter Betriebsbeanspruchung aufgetragen. Die in einem Laststeigerungsversuch und zwei Einstufenversuchen ermittelten Ermüdungsdaten dienen als Eingangsgrößen zur Lebensdauerberechnung auf der Basis allgemeiner Morrow- und Basquin-Gleichungen mit der physikalisch basierten Methode „PHYBAL‟. Mit nur drei Ermüdungsversuchen können Wöhlerkurven in sehr guter Übereinstimmung mit experimentellen Bruchlastspielzahlen berechnet werden. Gegenüber der konventionellen Ermittlung von Wöhlerkurven, die mit einem hohen experimentellen und zeitlichen Aufwand verbunden ist, führt die Anwendung von „PHYBAL‟ zu einer erheblichen Verkürzung der Versuchszeiten und damit zu einer deutlichen Absenkung der Kosten.

Abstract

PHYBAL — Short-time procedure for fatigue life calculation of metallic materials using physically based fatigue data. In this investigation, besides mechanical stress-strain-hysteresis measurements, high-precision temperature and electrical resistance measurements were used for the microstructure-related characterisation of the fatigue behaviour, and for the fatigue life calculation of metallic materials. In a test procedure developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern, short constant amplitude sequences with a stress amplitude below the endurance limit are inserted in service load spectra. The measured physical values are plotted in cyclic deformation curves for the evaluation of deformation-induced microstructural changes and the proceeding fatigue damage under service loading, equivalent as practised in conventional constant amplitude tests. The fatigue data determined in one load increase test and two constant amplitude tests serve as input values for fatigue life calculation on the basis of generalised Morrow and Basquin equations using the physically based method ‟PHYBAL”. With only three fatigue tests, Woehler curves can be calculated in a very good accordance with conventionally determined ones. Compared to the conventional determination of Woehler curves, the application of ‟PHYBAL” leads to a substantial reduction of experimental time and costs.


Dr.-Ing. habil. Frank Walther, geb. 1970, studierte Maschinenbau und promovierte mit einer Arbeit zum „Einfluss der Mikrostruktur auf das Wechselverformungsverhalten hoch beanspruchter Eisenbahnradstähle‟ und habilitierte sich mit der Arbeit zu „Physikalisch basierten Messverfahren zur mikrostrukturbasierten Characterisierung des Ermüdungsverhaltens metallischer Werkstoffe an der TU Kaiserslautern. Seit 2002 ist er wissenschaftlicher Assistent und Leiter der Arbeitsgruppe Schwingfestigkeit am Lehrstuhl für Werkstoffkunde der TU Kaiserslautern. Seine Forschungsschwerpunkte sind die mikrostrukturbasierte Charakterisierung des Wechselverformungsverhaltens und die Lebensdauerberechnung metallischer Werkstoffe auf der Basis physikalischer Messverfahren.

Prof. Dr.-Ing. habil. Dietmar Eifler, geb. 1949, studierte Maschinenbau, promovierte mit einer Arbeit zum „Wechselverformungsverhalten von vergütetem 42CrMo4‟ und habilitierte sich mit einer Arbeit zum „Temperatur- und Mittellasteinfluss auf das Wechselverformungsverhalten unlegierter Stähle‟ an der Universität Karlsruhe (TH). Von 1991 bis 1994 war er Professor an der Universität Essen. Seit 1994 ist er Professor am Lehrstuhl für Werkstoffkunde der TU Kaiserslautern. Seine Forschungsschwerpunkte sind das Wechselverformungsverhalten metallischer Werkstoffe, biokompatible Implantatwerkstoffe sowie das Ultraschallschweißen und Rührreibschweißen.


Literatur

1 J. D.Morrow: Cyclic plastic strain energy and fatigue of metals, Internal Friction, Damping, and Cyclic Plasticity, 67th Annual Meeting ASTM, STP378 (1964), S. 458710.1520/STP43764SSearch in Google Scholar

2 P.Lukásˇ, M.Klesnil: Cyclic stress-strain response and fatigue life in metals in low amplitude region, Mat. Sci. Eng.11 (1973), S. 34535610.1016/0025-5416(73)90125-0Search in Google Scholar

3 K. F.Stärk: Temperaturmessung an schwingend beanspruchten Werkstoffen. Z. Werkstofftech.13 (1982), S. 33333810.1002/mawe.19820131003Search in Google Scholar

4 H.Harig, K.Middeldorf, K.Müller: Überblick über thermometrische Untersuchungen zum Ermüdungsverhalten von Stählen, HTM41 (1986), S. 286296Search in Google Scholar

5 G.Fargione, A.Geraci, G.La Rosa, A.Risitano: Rapid determination of the fatigue curve by the thermographic method, Int. J. Fatigue24 (2002), S. 111910.1016/S0142-1123(01)00107-4Search in Google Scholar

6 F.Curà, G.Curti, R.Sesana: A new iteration method for the thermographic determination of fatigue limit in steels, Int. J. Fatigue27 (2005), S. 45345910.1016/j.ijfatigue.2003.12.009Search in Google Scholar

7 G.Meneghetti: Analysis of the fatigue strength of a stainless steel based on the energy dissipation, Int. J. Fatigue29 (2007), S. 819410.1016/j.ijfatigue.2006.02.043Search in Google Scholar

8 J.Polák: Electrical resistivity of cyclically deformed copper, Czech. J. Phys. B19 (1969), S. 31532210.1007/BF01712868Search in Google Scholar

9 W.Kleinert, R.Franke: Change of electrical resistivity and stress amplitude during push-pull fatigue of polycrystalline nickel, Phys. Stat. Sol. (a)53 (1979), S. K177-K17910.1002/pssa.2210530252Search in Google Scholar

10 J.Charrier, R.Roux: Evolution of damage fatigue by electrical measure on smooth cylindrical specimens, Nondestr. Test. Eval.6 (1991), S. 11312410.1080/10589759108953132Search in Google Scholar

11 J. H.Constable, C.Sahay: Electrical resistance as an indicator of fatigue, IEEE T. Compon. Hybr. 15, 6 (1992), S. 1138114510.1109/33.206940Search in Google Scholar

12 D. D. L.Chung: Structural health monitoring by electrical resistance measurement, Smart Mater. Struct.10 (2001), S. 62463610.1088/0964-1726/10/4/305Search in Google Scholar

13 B.Sun, Y.Guo: High-cycle fatigue damage measurement based on electrical resistance change considering variable electrical resistivity and uneven damage, Int. J. Fatigue26 (2004), S. 45746210.1016/j.ijfatigue.2003.10.004Search in Google Scholar

14 A.Piotrowski, D.Eifler: Bewertung zyklischer Verformungsvorgänge metallischer Werkstoffe mit Hilfe mechanischer, thermometrischer und elektrischer Messverfahren, Mat.-wiss. u. Werkstofftech.26 (1995), S. 12112710.1002/mawe.19950260305Search in Google Scholar

15 M.Kocer, F.Sachslehner, M.Müller, E.Schafler, M.Zehetbauer: Measurement of dislocation density by residual electrical resistivity, Mater. Sci. Forum210–213 (1996), S. 13314010.4028/www.scientific.net/MSF.210-213.133Search in Google Scholar

16 F.Walther, D.Eifler: Cyclic deformation behavior of steels and light-metal alloys, Mat. Sci. Eng. A468–470 (2007), S. 25926610.1016/j.msea.2006.06.146Search in Google Scholar

17 F.Walther, D.Eifler: Fatigue life calculation of SAE 1050 and SAE 1065 steel under random loading, Int. J. Fatigue 29 (2007), S. 18851892Search in Google Scholar

18 P.Starke, F.Walther, D.Eifler: PHYBAL -A new method for lifetime prediction based on strain, temperature and electrical measurements, Int. J. Fatigue28 (2006), S. 1028103610.1016/j.ijfatigue.2005.07.050Search in Google Scholar

19 B.Ebel-Wolf, F.Walther, D.Eifler: Cyclic deformation behaviour and lifetime calculation of the magnesium die-cast alloys AZ91D, MRI 153M and MRI 230D, Int. J. Mat. Res.98 (2007), S. 117122Search in Google Scholar

20 F.Walther, D.Eifler, U.Mosler, U.Martin: Deformation behaviour and microscopic investigations of cyclically loaded railway wheels and tires, Z. Metallkd.96 (2005), S. 753760Search in Google Scholar

21 C.Berger, K.-G.Eulitz, P.Heuler, K.-L.Kotte, H.Naundorf, W.Schuetz, C.M.Sonsino, A.Wimmer, H.Zenner: Betriebsfestigkeit in Germany - an overview, Int. J. Fatigue24 (2002), S. 60362510.1016/S0142-1123(01)00180-3Search in Google Scholar

22 P.Heuler, H.Klätschke: Generation and use of standardised load spectra and load-time histories, Int. J. Fatigue27 (2005), S. 97499010.1016/j.ijfatigue.2004.09.012Search in Google Scholar

23 D.Eifler, E.Macherauch: Microstructure and cyclic deformation behaviour of plain carbon and low-alloyed steels, Int. J. Fatigue12 (1990), S. 16517410.1016/0142-1123(90)90092-SSearch in Google Scholar

Online erschienen: 2013-05-26
Erschienen im Druck: 2008-03-01

© 2008, Carl Hanser Verlag, München

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.3139/120.100870/html
Scroll to top button