
Appendix A Estimation of molecular diffusion
velocities sD

To estimate the magnitude of the molecular diffusion velocities sD, an approximation
of ρDc∇c ≈ ρD̃c∇c̃ was applied, with errors coming from two resources. The one

is the neglecting the Favre-correlation term of D̃′′
c
∂c′′

∂x in the approximation, which
may overestimate the molecular diffusion flux. The other one is the overestimation
of ∇c̃ when applying the thin flamelet assumption. Overall, the following analysis
only enables us to estimate the order of the negligible molecular diffusion flux to
be compared with other terms, but cannot provide an accurate measurement of the
molecular diffusion unless we have a full measurement of the progress of reaction c in
every single shot.

A.1 Molecular diffusion flux
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Fig. A2 Laplacian operator of c along selected streamlines, normalized by δ2L. Blue solid symbol:
conditional average of ∆c̄; red dash line: Fitting with Eq. (A16).

The final (and as will be seen, smallest) term to be estimated is the molecular
diffusion term ∇·TD

c in Eq. 4 using the bimodal flamelet model by Libby Libby (1989)
to consider the effect of temperature on diffusivity. The approximation assumes that
the mean diffusion flux is of the order of the diffusion flux of the mean Dunstan et al
(2011), to obtain the order of magnitude of the term, and the molecular diffusion
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coefficient is equal to the thermal diffusivity as Lewis number equal to one, scaled
with temperature via Sutherland’s law (T 3/2). The molecular diffusion flux TD

c can
be modelled as follows:

TD
c = ρDc∇c ≈ ρD̃c∇c̃ (A11)

= (ρu(1− c)Du + ρbcDb)∇c̃ (A12)

=

(
ρu(1− c)Du + ρbcDu

T
3/2
b

T
3/2
u

)
∇c̃ (A13)

=
(
ρu(1− c)Du + ρbcDuΘ

3/2
)
∇c̃ (A14)

= ρu
ν

Pr
(1− c+ cΘ1/2)∇c̃ (A15)

The divergence of the molecular flux is proportional to the Laplacian operator ∆c̃.
Determination of the Laplacian is difficult, because the local noise of c is amplified
after taking divergence and gradient of c̃. ∆c is used instead of ∆c̃ for higher accu-
racy measurement in the middle of the flame brush. Laplacian c can be re-written as
Eq. (A16) and fitted with a physically-based polynomial, k1c̄(1− c̄)(1− 2k2c̄+ k3c̄

2),
along c̄ in Figure A2. It is similar to a flat flame, but with allowance for skewness in
the distribution of ∆c̄. Details of how Eq. (A16) is chosen can be referred to the B.3.

∆c̄ = k2|∇c̄|c̄(1− c̄)(1− 2c̄) + c̄(1− c̄)g(c̄) (A16)

where k|∇c̄| is the factor of fitting |∇c̄| with parabolic equations, g(c̄) is a function of c̄.
Figure A2 shows measured values of ∆c along the streamlines considered before.

The values of ∆c are positive along streamlines close to the center of the flame (N1
and P1), whereas negative values appear away from the centerline near the trailing
edge of N2 and P2.

A.2 Molecular diffusion term sD

As shown shortly, the molecular diffusion is negligible compared with the other two
terms. Nevertheless, we still present a detailed discussion on the estimates and extrap-
olation of sD to the leading edge into a form appropriate for fitting. Starting from the
definition of the term, and the approximation in Eq. (A15), we have:

sD =
∇ · TD

c

ρ|∇c̃|
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(A17)
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where ∆ is the Laplacian operator, ∆c̃ = ∇·∇, Sc is the Schmidt number and is equal
to the Prandtl number Pr when Lewis number Le is equal to 1.

Invoking Eq. (B30) into Eq. (A17), we can have sD as a function of ∆c and |∇c|,
which avoids the term containing Favre-averaged terms and can be more easily fitted
by experimental measurement.
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(A18)
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Fig. A3 Molecular diffusion term sD along streamlines. Blue symbols: measured values, dashed red
line: fitted values using Eq. (A18).

Figure A3 shows measured values of sD and compared fitted results from Eq. (A18).
The Laplacian operator ∆c in the first term was fitted with k1c̄(1− c̄)(1−2k2c̄+k3c̄

2))
in Figure A2.

At both c̄ = 0 and c̄ = 1, the second term in Eq. (A18) is equal to zero, and only the
Laplacian term, which is apparently non-zero, makes a contribution to sD. sD should
be proportional to k|∇c̄| at c̄ = 0, and −Θ3/2k|∇c̄| at c̄ = 1, while the actual value
depends on fitting results of ∆c̄. The fitted results at the leading edge (0 < c < 0.1)
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show less uncertainty, while the fitted results in the trailing edge (0.9< c <1) are not.
However, comparisons with terms Fig. 12 and Fig. 14 show that sD are of smaller order
and can be neglected at current levels of turbulence. Eq. (A18) provides an approach
to filter the noise of directly calculating values of sD and fit the sD to the leading edge
with a reasonable form.

Appendix B Mathematical derivations

B.1 Relationships between Ensemble- and Favre-average
quantities based on the flamelet assumption

Conversions between ensemble-averaged variables and density- ( or Favre-) averaged
variables are useful. Details of the derivations from ∇c̃ to ∇c, and the conversion from
∆c̃ to ∆c are as follows:

Under the bimodal probability model of the probability distribution function for
c, we have

ρ = ρu(1− c) + ρbc (B19)

ρ

ρu
=

(
1 + c̄

(
1

Θ
− 1

))
(B20)

c̃ = c̄ (Θ + c̄ (1−Θ))
−1

(B21)

where Θ = ρu/ρb, and the densities are reckoned at the corresponding equilibrium
equivalence ratios.

To connect |∇c̃| to |∇c|, we start from the gradient of the product ρc̃ = ρbc:

∇(ρc̃) = ρ∇c̃+ c̃∇ρ = ρb∇c (B22)

∇c̃ =
ρb
ρ
∇c− ρbc

ρ2
∇ρ

=

(
1− c

ρb − ρu
ρ

)
ρb
ρ
∇c

=
ρuρb

ρ2
∇c (B23)

The flux term ũ′′c′′, is expressed in terms of the express the conditional velocities,
uu and ub, in order to avoid measurement error in experiments. The following terms
come into the equations:

ρũ = ρu = ρu(1− c)uu + ρbc̄ūb (B24)

(ρu(1− c) + ρbc)ũ = ρu(1− c)uu + ρbc̄ūb (B25)

ρbc(ũ− ub) = ρu(1− c)(uu − ũ) (B26)
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Finally, the Laplacian ∆c can be connected with ∆c̃ and provides an approach to
convert ∆c̃ into a function of ∆c and |∇c|, which can be more easily fitted.

∇2c = ∇ · ∇c = ∇ · (ρ2∇c

ρ2
) = ∇(ρ2) · ∇c

ρ2
+

ρ2

ρuρb
(∇ · (ρuρb∇c

ρ2
)) (B27)

= ∇
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− 1))2
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Θ − 1))2
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|∇c|2 + ρ2

ρuρb
∆c̃ (B29)

Finally, we have Laplacian ∆c̃ as

∆c̃ =
ρuρb

ρ2

(
∆c−

2( 1
Θ − 1)

1 + c( 1
Θ − 1)

|∇c|2
)

(B30)

B.2 Mathematical derivation of flame surface density

In this Appendix, we show the equivalence between the flame surface definition Σ =
|∇c δ(c− c∗)| and ΣA/V as derived from the zero limits of mean area per volume,

Σ(A/V) =
1

Nf

Nf∑
i=1

Ai(c̄)

V (c̄)
(B31)

B.2.1 Conversion of definitions

To conduct the conversion from Σ to Σ(A/V), we define as an infinitesimal volume
dV = dVu + dVb. dVu and dVb are volumes of reactant and product in the volume dV ,
separated by a boundary dAi.

Σ(x) = lim
dV→0

1

dV

˚
dV

Σ(x) dV

= lim
dV→0

1

dV

 lim
Nf→∞

1

Nf

Nf∑
1

˚
dV

Σ′(x) dV
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Nf→∞

1

Nf

 lim
dV→0

Nf∑
1

˝
dV

Σ′(x) dV

dV

 (B32)

Next, we need to prove the volume integral of Σ′ in Eq. (B32) is equal to the total
flame surface area dAi inside any volume. The volume integral in Eq. B32 can be
separated into integrals over reactant and product sides.

˚
dV

Σ′(x) dV =

˚
dVb

Σ′(x) dV +

˚
dVu

Σ′(x) dV (B33)

37



Fig. B4 Illustration of an steady arbitrary infinitesimal volume connecting burned (dVu) and
unburnt (dVu) volumes, such that dV = dVu+dVb. The grey surface of area dAi connects burned, and
unburnt regions (in 3D); the areas dAu and dAb connect with dAi to close their respective volumes.

In order to determine the gradient∇c, the Heaviside functionH(c−c∗) = c δ(c−c∗)
is used, in the following proof, and H defined in the volume dV . The definition of H
at the flame surface is irrelevant to the following proof and can be defined as any value
between 0 to 1. In this study, H can be defined as Hf = 1/2 on the flame surface
where H(x) is discontinuous Abramowitz and Stegun (1964).

H =


0, x∈ reactant

Hf , x∈ flame surface

1, x∈ product

(B34)

Invoking the definition of H and the divergence theorem (twice) into each term on
the RHS of Eq. (B33), we have

˚
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Σ′(x) dV =

˚
dVb

|∇H| dV (B35)

=

˚
dVb

∇H

|∇H|
· ∇H dV

=

‹
dAi+dAb

(
∇H

|∇H|
H

)
· n̂ dA−

˚
dVb

H

(
∇ · ∇H

|∇H|

)
dV

=

‹
dAi

Hf

(
∇H

|∇H|

)
·
(
− ∇H

|∇H|

)
dA−

˚
dVb

1

|∇H|
(∇ · ∇H) dV

= −Hf dAi −
‹

dAi

1

|∇H|
∇H · n̂ dA

= −Hf dAi −
‹

dAi

1

|∇H|
∇H ·

(
− ∇H

|∇H|

)
dA

= (1−Hf ) dAi (B36)
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The same derivation can be conducted on the integral over dVu, so that,

˚
dVu

Σ′(x)dV =

˚
dVu

|∇H| dV (B37)
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where dAu is the part of the enclosed surface of dV that encloses dVu.
The sum of the two equations above yields the LHS of Eq. (B33) as equal to dAi.

Therefore, Σ(x) is equivalent to the definition of Σ3Dre based on area per volume.

˚
dV

Σ′(x) dV = dAi (B39)

Σ(x) = lim
Nf→∞

1

Nf

Nf∑
i=1

(
lim

dV→0

dAi

dV

) (B40)

≈ 1

Nf

Nf∑
i=1

dAi

dV

 = Σ(A/V) (B41)

Or we can re-write ΣA/V as

Σ(A/V) =
1

dV

˚
dV

Σ(x) dV (B42)

Overall, the above derivation shows that different definitions of local flame surface
densities in 3D are equivalent. The derivations are of course still valid in 2D, where
the limit of A/V becomes a line per unit area.

B.2.2 Σ2D measurement and spatial resolution

The present subsection outlines the determination of Σ2D in Eq. (11).We start
with the result from the previous appendix, which showed the equivalence ΣA/V =

|∇c δ(c− c∗)|. Therefore, the calculation of the 2D version ΣA/V = Σl/A, where l is
the conditional flame length, and A the conditional flame area.

Starting from equation Σ2D is equivalent to the ensemble average of flame length
per area at the local pixel. If the flame edge is not coincident with the pixel, the
magnitude of the gradient is zero; otherwise, the magnitude of the gradient is equal
to the flame length per unit area in the pixel. Because of the limited pixel resolution,
there is an uncertainty in flame edge direction.

39



Fig. B5 Illustration of length per area σl/A in binarized images in each pixel. White: reactant side;
Red: product side.

For images with a pixel resolution of ∆x mm/pixel × ∆y mm/pixel, the averaged
2D gradient of a binarized image corresponding to an edge pixel can have three dif-
ferent values, shown in Figure B5. Each value represents an approximation of length
per area in this pixel. Based on the proof in the last section, Σ(A/V) is the spatially-
averaged local flame surface Σ in the nearby region, no matter what size the region
is. The value of Σ2D derived from the processing method in Eq. (11) also corresponds
to a spatially-averaged local flame surface density.

B.3 Modeling the Laplacian operator

The Laplacian ∆c̄ in a 2D field is the divergence of the gradient of c̄, and can be
rewritten by using an angle form of ∇c̄ as follows:

∆c̄ = ∇ · (|∇c̄| sinα, |∇c̄| cosα) = ∂

∂x
(|∇c̄| sinα) + ∂

∂y
(|∇c̄| cosα)

=
∂|∇c̄|
∂x

sinα+ |∇c̄| cosα∂α

∂x
+

∂|∇c̄|
∂y

cosα− |∇c̄| sinα∂α

∂y
(B43)

Invoking the parabolic fitting of |∇c̄| into Eq. (B43) and considering the variation
of α across different streamlines, we can re-write Laplacian ∆c̄ into a polynomial form
which must go across zero at c̄ = 0 and c̄ = 1.

∆c̄ = k2|∇c̄|c̄(1− c̄)(1− 2c̄) + c̄(1− c̄)g(c̄) (B44)

where k|∇c̄| is the factor of fitting |∇c̄| with parabolic equations, g(c̄) is a function of c̄.
The derivation of Eq. (B44) is given as follows. In the present approximation, we

assume that (a) there is a field of the mean progress of reaction c̄, and that (b) the
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gradient of the field in the direction of the normal to the flame brush can be represented
as ∇c̄ = kc̄(1− c̄), where k may be a local constant.

Fig. B6 Illustration of coordinate defined in modeling the Laplacian operator

In a 2D flame, α, the angle between the normal vector n̂ and z−axis, can be
expressed as a function of c̄ and a symbol which represents the selected streamline and
can be defined in various ways. Here, we define a ξs as the spatial distance along the
isocontour c̄ = 0 from the local streamline to the central line (r = 0) in Figure B6.

Therefore, Eq. (B43) can be expanded as follows:

∆c̄ =

(
k(1− 2c̄)

∂c̄

∂x
+ c̄(1− c̄)

∂k
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)
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∂k

∂y

)
cosα+ ...

|∇c̄|
(
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∂y

)
(B45)
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(B46)
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)
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∂ξs
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)
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(
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(B47)

=k2c̄(1− c̄)(1− 2c̄) + c̄(1− c̄)

((
sinα

∂ξs
∂x

+ cosα
∂ξs
∂y

)
∂k

∂ξs
+ k

(
cosα

∂ξs
∂x

− sinα
∂ξs
∂y

)
∂α

∂ξs

)
(B48)

Based on Figure 5, the variation of α along one streamline is small, and we can
approximately assume ∂ξs

∂x = cosα0 and ∂ξs
∂y = − cosα0 along each streamline, where
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α0 = α(c̄ = 0, ξs). Then, Eq. (B48) can be further simplified as

∆c̄ ≈ k2c̄(1− c̄)(1− 2c̄) + c̄(1− c̄)

(
sin(α− α0)

∂k

∂ξs
+ k cos(α− α0)

∂α

∂ξs

)
(B49)

≈ k2c̄(1− c̄)(1− 2c̄) + c̄(1− c̄)

(
(α− α0)

∂k

∂ξs
+ k

∂α

∂ξs

)
(B50)

= c̄(1− c̄)g(c̄, ξs) (B51)

where g(c̄, ξs) =
(
k2(1− 2c̄) + (α− α0)

∂k
∂ξs

+ k ∂α
∂ξs

)
∂k
∂ξs

only depends on ξs and is a constant along each streamlines. ∂α
∂ξs

obviously
depends on c̄ and ξs, and can be expressed as a function of c̄ along each streamlines.
Therefore, the second term in Eq. (B50) can be expressed as a function of c̄. To avoid
over-fitting and consider a higher-order of c̄ in α, g(c̄, ξs)is considered as a second-
order polynomial in each streamline during the fitting process, and we have a final
form of fitting Laplacian ∆c̄ as

∆c̄ = k1c̄(1− c̄)(1− 2k2c̄+ k3c̄
2) (B52)
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