Determination of the Modulus of Elasticity by Bending Tests of Specimens with Nonuniform Cross Section - Supplementary Material

M. Gebhardt ^{1,2}, H. Steinke ², V. Slowik ^{1,*}

- ¹ Institute of Experimental Mechanics, Leipzig University of Applied Sciences, Karl-Liebknecht-Straße 132, 04277 Leipzig, Germany
- ² Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
- * Corresponding author

Table of contents

1. Ad	ditional information on the experiments	2
1.1.	Test procedure	2
1.2.	Measurement	2
1.3.	Drawings of the test device	2
2. Ad	ditional evaluation results	8
3. Ve	ification tests	
3.1.	Specimens	16
3.2.	Test procedure	16
3.3.	Measurement	
3.4.	Assumptions	16
3.5.	Results	

1. Additional information on the experiments

- 1.1. Test procedure
 - Displacement controlled testing with:
 - $\dot{w} = (\dot{\varepsilon} \times s^2)/(6 \times t), \dot{\varepsilon} = 0.005 \text{ s}^{-1}, s = 20 \text{ mm}, t = \text{thickness in midspan}$
 - Maximum force (safety threshold) $F_{max,sec} = 250 \text{ N}$
 - Load until failure, or decrease of force by $0.3 \times F_{max}$

1.2. Measurement

- Conventional:
 - Data acquisition system: QuantumX (100 Hz sampling rate, no filters; MX840B, Hottinger Brüel & Kjaer, Darmstadt, Germany)
 - o Displacement: LVDT W10K, Hottinger Brüel & Kjaer, Darmstadt, Germany)
 - Force: internal load cell of testing machine and additional 20 kg-load cell (S40S-G3-0020, Bosche, Damme, Germany)
- Optical:
 - Measuring method: Digital Image Correlation (DIC; 4 Hz sampling rate; Q400 DCM 12.0, Limess, Krefeld, Germany; Istra4D, Dantec Dynamics, Skovlunde, Denmark) with 50 mm lens (VS-5018H1, VS Technology, Tokyo, Japan) and spacer rings (5 + 10 mm), object distance ~ 250 mm, camera distance ~ 164 mm
 - Lighting: two area LED lights (T120, Shenzhen Neewer Technology, Shenzhen, China) at 5600 K
 - Calibration: Istra4D calibration target (2 mm marked white glass [GL-02-WMB_9x9])
 - Marking:
 - Indirect: Speckle pattern with measurement marks laser printed on weatherresistant labels (AST-Speckle-Pattern_Labels_V03-2.pdf on L4775, Avery Zweckform, Oberlaindhaim, Germany)
 - Direct:
 - Opaque white priming (Eberhard Faber, Stein, Germany) with brush (GH30414, da Vinci Künstlerpinselfabrik DEFET, Nuremberg, Germany)
 - Black toner dust (2220D, Ricoh, Tokyo, Japan)
 - Pollinator can with flat filter (one layer of URMA, 1-2-3 Filter, Reinbek, Germany)
 - Draught-proof chamber
- Synchronization: Analog trigger (5 V batterie with switch)

1.3. Drawings of the test device

F-F (1:1)

Scale:				Format:
Material:				, .0
Description: Three-point bendin P1 - Base plate top	g test	setup for cortica	l bone	
Drawing number: PF004-004-001	Revision: 4	Original date: 27.02.2019	Revision 10.0	^{date:})8.2022
Drawer: Marc Gebhardt		Organisation:	Leipzig Uni	versity

Scale:		Format:
- Material:		A3
Stainless steel V2		
Three-point bending test P2 - Base plate bottom	setup for cortica	l bone
Drawing number: Revision PF004-004-002 4	: Original date: 27.02.2019	Revision date: 10.08.2022
Drawer: Marc Gebhardt	Organisation:	Leipzig University of Applied Sciences

C-C (2:1)

E-E (2:1)

Scale:				Format: A3
Material: Stainless steel V2				
Description: Three-point bending tes P3 - Stamp rotatable	st se	etup for cortica	I bone	
Drawing number: Revisi PF004-004-003 4	ion: O	original date: 27.02.2019	Revision 10.0	^{date:})8.2022
Drawer: Marc Gebhardt	0	^{organisation:}	Leipzig Unit	versity Sciences

le:		Format: A3	
erial: Stainless steel V2			
^{cription:} ⁻ hree-point bending t P4 - Stamp fixed	est setup for cortica	Il bone	
wing number: Re PF004-004-004 4	vision: Original date: 4 27.02.2019	Revision date: 10.08.2022	
^{wer:} /larc Gebhardt	Organisation:	Leipzig University of Applied Sciences	7

2. Additional evaluation results

Figure 1: Distribution of geometrical properties ($\Delta h/h_{mid}$: difference between maximum and minimum height divided by the height at midspan, width accordingly, $\kappa_{mid,circle}$: curvature of an inscribed circle, κ_{mid} : midspan curvature of fitted function)

Table 1: Material properties

Parameter	Unit	Minimum	Maximum	Average	Median	Standard deviation	Coefficient of variation in [-]	Confidence interval minimum	Confidence interval maximum
Apparent density	[g/cm ³]	0.986	1.866	<u>1.463</u>	1.459	0.187	0.128	1.430	1.492
Yield strength	[MPa]	1.449	95.754	22.645	17.382	16.916	0.747	19.749	25.306
Strain (yield)	[%]	0.404	3.839	<u>1.646</u>	1.608	0.462	0.281	1.572	1.726
External work (yield)	[mJ]	0.383	35.227	<u>8.594</u>	6.797	6.858	0.798	7.471	9.689
Ultimate strength	[MPa]	1.954	106.147	<u>28.197</u>	23.001	19.727	0.700	24.837	31.212
Strain (ultimate)	[%]	0.680	13.812	3.940	3.542	1.779	0.451	3.671	4.246
External work (ultimate)	[mJ]	2.902	244.207	<u>31.538</u>	23.254	28.602	0.907	27.036	36.229
Fracture strength	[MPa]	1.447	94.716	<u>22.947</u>	18.634	16.870	0.735	20.005	25.574
Strain (fracture)	[%]	0.680	15.165	<u>5.483</u>	5.153	2.288	0.417	5.242	5.665
External work (fracture)	[mJ]	2.902	273.483	48.112	38.481	40.013	0.832	42.186	50.812

Table 2: Statistical evaluation for selected methods (modulus of elasticity determined incrementally in refined range, with exclusion of statistical outliers on the specimen level)

	Modulus of elasticity in [MPa]							Coefficient of variation of evaluation range in [%] দ্বন্তু							[%]	
Method	Minimum	Maximum	Average	Median	Standard deviatio	Coefficient of variation in [-]	Confidence interva minimum	Confidence interva maximum	Minimum	Maximum	Average	Median	Standard deviatio	Coefficient of variation in [-]	Confidence interva minimum	Confidence interva maximum
AOAI	29	4333	<u>882</u>	631	781	0.885	753	1006	2.8	74.4	<u>11.8</u>	10.4	7.2	0.607	10.7	13.1
A2MI	45	631862	<u>7931</u>	1312	56987	7.186	1570	18702	1.9	156.5	<u>12.8</u>	10.1	17.0	1.334	10.5	16.0
A4MI	40	469439	<u>6723</u>	1257	44064	6.554	1566	15099	1.9	168.9	<u>15.5</u>	10.7	22.0	1.421	12.2	19.4
B1MI	35	8337	<u>1944</u>	1473	1683	0.866	1693	2208	2.6	46.8	<u>12.7</u>	12.4	6.1	0.483	11.8	13.8
B2MI	41	6669	<u>1610</u>	1205	1388	0.862	1385	1815	1.4	43.5	<u>11.1</u>	10.3	4.9	0.443	10.3	12.0
C2MI	47	6335	<u>1708</u>	1281	1425	0.834	1475	1926	5.0	26.3	<u>10.6</u>	9.9	3.2	0.303	10.0	11.2
C2CI	45	6357	<u>1721</u>	1293	1440	0.836	1488	1942	4.7	25.7	<u>10.6</u>	9.8	3.4	0.322	10.0	11.3
D1Mguw	48	6495	<u>1738</u>	1342	1431	0.823	1502	1960	4.5	26.4	<u>10.7</u>	9.7	4.0	0.372	10.1	11.4
D1Mgwt	47	6454	<u>1739</u>	1308	1444	0.830	1504	1963	4.2	25.8	<u>10.3</u>	9.6	3.4	0.328	9.8	11.0
D2Mguw	50	6543	<u>1786</u>	1349	1471	0.824	1543	2012	2.2	26.4	<u>10.5</u>	9.8	3.4	0.323	9.9	11.1
D2Mgwt	48	6455	<u>1748</u>	1318	1448	0.829	1511	1971	4.1	26.3	<u>10.5</u>	9.9	3.3	0.313	10.0	11.2
E4MI	42	7737	<u>1747</u>	1285	1540	0.882	1492	1982	1.3	113.2	<u>12.1</u>	10.4	10.5	0.862	10.7	14.0
E4Me	41	6110	<u>1366</u>	961	1256	0.920	1168	1565	2.5	49.7	<u>13.0</u>	11.8	6.4	0.491	12.0	14.1
E4Mg	42	5940	<u>1486</u>	1085	1279	0.861	1277	1681	2.4	31.4	<u>11.7</u>	11.0	4.8	0.408	10.9	12.5
F4Mgha	44	26540	<u>2086</u>	1406	2725	1.306	1671	2585	2.3	1216.2	<u>21.9</u>	9.9	103.9	4.749	11.1	40.5
F4Mgth	41	6854	<u>1715</u>	1285	1451	0.846	1469	1945	1.4	104.6	<u>12.8</u>	10.3	12.4	0.975	10.9	14.8
G3Mg	45	6063	<u>1574</u>	1171	1351	0.858	1355	1782	2.9	28.1	<u>11.6</u>	11.1	4.5	0.390	10.9	12.4
G3Cg	43	5826	<u>1504</u>	1095	1286	0.855	1296	1702	3.0	26.9	<u>11.6</u>	10.9	4.5	0.389	10.8	12.3

Figure 2: Influences on the incrementally in refined range determined moduli of elasticity.

Figure 3: Correlation diagrams with linear regressions for moduli of elasticity incrementally in refined range determined by Methods AOAI and D2Mgwt; confidence intervals determined by bootstrapping for a confidence level of 95 %.

Spearman correlation coefficients for geometrical and additional factors

Figure 4: Influences on the moduli of elasticity determined without (**A*) and with (**S*) elimination of the support indentation, confidence intervals determined by bootstrapping for a confidence level of 95 %.

Spearman correlation coefficients for geometrical and additional factors

Relative deviation Trimmed values: 0.20 A2*I: 2.91 (0.03 - 7.33) A4*l: 2.23 (0.03 - 5.82) F4*gha: 0.22 (0.03 - 0.47) 0.15 $D_{E,M-S}$ 0.10 1 0.05 0.00 D1*gwt D1*guw D2*gwt E4*g F4*gha E4*e G3*g A4*l B1*| B2*| C2*| E4*| F4*gth A2*I D2*guw

Figure 5: Influences on the moduli of elasticity determined without (**S*) and with (**M*) elimination of the shear deformation, with support indentation eliminated in both cases, confidence intervals determined by bootstrapping for a confidence level of 95 %.

Evaluation method

Spearman correlation coefficients for geometrical and additional factors

W_{b,op}

Figure 6: Influences on the moduli of elasticity determined without (**A*) and with (**M*) elimination of the shear deformation, as well as the support indentation, confidence intervals determined by bootstrapping for a confidence level of 95 %.

-0.4

Figure 7: Relative deviation of the moduli of elasticity from the conventionally determined one (Method AOAI), confidence intervals determined by bootstrapping for a confidence level of 95 %.

3. Verification tests

3.1. Specimens

- Two rectangular beams (hxbxl ~ 2x8x36 mm³) sawed from Polymethyl methacrylate (PMMA) of unknown age
- Five test specimens with different geometry, shown in Figure 8. Manufactured by Fused Deposition Modeling (FDM) with eSun Polylactic acid (PLA) (Creality Ender 3, *d*_{Nozzle} = 0.4 mm, *t*_{Layer} = 0.2 mm, *T*_{Print} = 200 °C, *T*_{Base} = 60 °C).

Figure 8: Shapes of the specimens made of Polylactic acid (PLA) for the verification tests schematically shown in test position A; length of the specimens 36 mm (from left to right: 01-uniform rectangular cross-section with the reference dimensions 2 × 8 mm² (height × width); 02-linearly varying height, at the supports 2.6 mm and 1.4 mm; 03-linearly varying width, at the supports 9 mm and 7 mm; 04-quadratic parabola for the height, 1.8 mm at the supports and 2.2 mm at midspan; 05-curved beam with uniform cross-section (reference dimensions), constant radius of curvature 50.5 mm).

- 3.2. Test procedure
 - Elastic loading with strain limitation to 2 %
 - Testing in original position (A), as well as 180° rotated about y-axis (B, see Figure 8)
- 3.3. Measurement
 - Optical: three cameras (middle camera with 15 mm offset), 5 Hz sampling rate
 - Marking direct:
 - STEEIRO Airbrush Kit with 0.8 mm nozzle
 - Priming with Vallejo Premium Airbrush Color White 63.001, 4 bar air pressure,
 2.5 rotations of air screw, 100 mm distance
 - Marking with Vallejo Premium Airbrush Color Black 62.020, 2 bar air pressure, 1.0 rotation of air screw, 100 mm distance, 3-5 times
- 3.4. Assumptions
 - Poisson's ratio:
 - Polymethyl methacrylate (PMMA): 0.375
 - Polylactic acid (PLA): 0.340

Figure 9: Verification tests – Relative deviation of the evaluation methods eliminating all falsifying influences (**M*) or correctly considering the shear deformation (**C*) from the preferred Method D2Mgwt; mean values with error bar showing minimum and maximum values.

Figure 10: Verification tests - Selected moduli of elasticity for different materials and loading situations; mean values with error bar showing minimum and maximum values.

Spearman correlation coefficients

h - Thickness b - Width A_{CS} - Cross-section area V - Volume l - Second moment of inertia κ - Geometrical curvature ind - Support indentation ρ_{app} - Apparent density f - Strength ε - Strain W - External work \overline{X} - Arithmetic average ΔX - Difference between max. and min. X_{mid} - Midspan position X_{circle} - Approximated as circle X_{el} - Elastic range X_y - Yield X_u - Ultimate X_{opt} - Determination via DIC

Figure 11: Verification tests - Influences on modulus of elasticity obtained by selected evaluation methods for PLA specimens, in loading range only.

Figure 12: Verification tests - Relative deviation of the analytical elastic curve from the measured curve, where the analytical elastic curve was calculated for the modulus of elasticity obtained by different evaluation methods in loading range for the PLA specimens; mean values with error bar showing minimum and maximum values.

Figure 13: Verification tests - Relative deviation of the moduli of elasticity for the PLA specimen geometries from the mean values for the rectangular cuboid beam (01).

Figure 14: Verification tests - Relative deviation of the moduli of elasticity for the PLA specimen geometries in test position B from the one in test position A.