Skip to main content

31.12.2024

14.5–24.5 GHz LNA with 10.6 dB Gain Tuning Range (21.4–10.8 dB) and 2.11–3.08 dB NFavg Using Body-to-Source Floating and Mutual Coupling

verfasst von: Yo-Sheng Lin, Jin-Fa Chang, Yu-Hao Zhuang

Erschienen in: Circuits, Systems, and Signal Processing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We demonstrate a novel 7.7–12.5 mW, 14.5–24.5 GHz low-noise amplifier (LNA). It achieves decent 10.6 dB gain tuning range (21.4–10.8 dB) and outstanding 2.11–3.08 dB average noise figure (NFavg) due to adoption of the body-to-source floating, mutual coupling, and multiple inductive peaking techniques. The CMOS LNA constitutes a common-source (CS) input stage. It is followed by current-reused CS gain and output stages. An auxiliary inductive-peaking CS stage is included in parallel with the CS output stage for gain and linearity boosting and noise figure (NF) reduction. Body-to-source floating technique, i.e., connection of the input transistor′s body to source via a large body floating impedance RBLB, is proposed. It is used for gain boosting and NF reduction due to the better suppression of the substrate noise and leakage. Mutual coupling is used to alleviate the Cgd1 effect and reduce the transmission line loss. To achieve decent 3 dB gain bandwidth (f3dB), multiple inductive peaking is used. In the high- gain mode, the LNA consumes 12.5 mW, and achieves S21 of 20.2 ± 1.5 dB for 14.5–24.5 GHz (i.e., f3dB of 10 GHz), minimum NF of 1.5 dB at 15 GHz, NFavg of 2.11 dB for 15–24 GHz, the first figure-of-merit (FOM1) of 20.8 GHz, and the second FOM (FOM2) of 4.78 1/mm2. To the authors′ knowledge, the NFavg, FOM1, and FOM2 performance are one of the best results ever reported for K- and Ka-band LNAs. Overall, the variable-gain LNA (with f3dB of 9.3–10.6 dB) consumes 7.7–12.5 mW and achieves decent gain tuning range of 10.6 dB (21.4–10.8 dB) at 19 GHz and outstanding NFavg of 2.11–3.08 dB for 15–24 GHz. The eminent performance of the 14.5–24.5 GHz LNA indicates it is suitable for low Earth orbit satellite communications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
3.
Zurück zum Zitat K.C. Chang, Y. Wang, H. Wang, Design of a 1.8-mW K-band low noise amplifier with 19.3-dB gain and 3.3-dB noise figure in 90-nm CMOS, in IEEE Asia-Pacific Microwave Conference (APMC) (2021), pp. 4–6 K.C. Chang, Y. Wang, H. Wang, Design of a 1.8-mW K-band low noise amplifier with 19.3-dB gain and 3.3-dB noise figure in 90-nm CMOS, in IEEE Asia-Pacific Microwave Conference (APMC) (2021), pp. 4–6
5.
Zurück zum Zitat X. Chen, X. Ren, D. Cheng, J. Feng, X. Wu, Q. Hu, X. Fan, L. Li, A K-band low noise amplifier in 65-nm CMOS with 3.3-dB NF and 18.1-dB power gain, in IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (2023), pp. 1–3 X. Chen, X. Ren, D. Cheng, J. Feng, X. Wu, Q. Hu, X. Fan, L. Li, A K-band low noise amplifier in 65-nm CMOS with 3.3-dB NF and 18.1-dB power gain, in IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (2023), pp. 1–3
6.
Zurück zum Zitat D. Cheng, L. Li, M. Xie, X. Wu, L. He, B. Sheng, A K-band variable gain low-noise amplifier with low phase variation in 65-nm CMOS, In: IEEE MTT-S International Wireless Symposium (IWS) (2021), pp. 1–3 D. Cheng, L. Li, M. Xie, X. Wu, L. He, B. Sheng, A K-band variable gain low-noise amplifier with low phase variation in 65-nm CMOS, In: IEEE MTT-S International Wireless Symposium (IWS) (2021), pp. 1–3
7.
Zurück zum Zitat T.Y. Chiu, Y. Wang, H. Wang, A Ka-band transformer-based switchless bidirectional PA-LNA in 90-nm CMOS process, in IEEE/MTT-S International Microwave Symposium (2021), pp. 450–452 T.Y. Chiu, Y. Wang, H. Wang, A Ka-band transformer-based switchless bidirectional PA-LNA in 90-nm CMOS process, in IEEE/MTT-S International Microwave Symposium (2021), pp. 450–452
8.
Zurück zum Zitat G. Cui, C. Zhao, H. Liu, Y. Yu, Y. Wu, K. Kang, Design of K-band compact wideband low noise amplifier, in International Conference on Microwave and Millimeter Wave Technology (ICMMT) (2023), pp. 1–3 G. Cui, C. Zhao, H. Liu, Y. Yu, Y. Wu, K. Kang, Design of K-band compact wideband low noise amplifier, in International Conference on Microwave and Millimeter Wave Technology (ICMMT) (2023), pp. 1–3
9.
Zurück zum Zitat M.L. Edwards, J.H. Sinsky, A new criterion for linear 2-port stability using geometrically derived parameters. IEEE Trans. Microw. Theory Techn. 40(12), 2303–2311 (1992)CrossRefMATH M.L. Edwards, J.H. Sinsky, A new criterion for linear 2-port stability using geometrically derived parameters. IEEE Trans. Microw. Theory Techn. 40(12), 2303–2311 (1992)CrossRefMATH
10.
Zurück zum Zitat X. Fu, Y. Wang, D. You, X. Wang, A.A. Fadila, Y. Zhang, S. Kato, C. Wang, Z. Li, J. Pang, A. Shirane, K. Okada, A 3.4mW/element radiation-hardened Ka-band CMOS phased-array receiver utilizing magnetic-tuning phase shifter for small satellite constellation, In IEEE International Solid-State Circuits Conference (2022), pp. 90–91 X. Fu, Y. Wang, D. You, X. Wang, A.A. Fadila, Y. Zhang, S. Kato, C. Wang, Z. Li, J. Pang, A. Shirane, K. Okada, A 3.4mW/element radiation-hardened Ka-band CMOS phased-array receiver utilizing magnetic-tuning phase shifter for small satellite constellation, In IEEE International Solid-State Circuits Conference (2022), pp. 90–91
11.
Zurück zum Zitat S. Kong, H.D. Lee, S. Jang, J. Park, K.S. Kim, C. Lee, A 28-GHz CMOS LNA with stability-enhanced Gm-boosting technique using transformers, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (2019), pp. 7–10 S. Kong, H.D. Lee, S. Jang, J. Park, K.S. Kim, C. Lee, A 28-GHz CMOS LNA with stability-enhanced Gm-boosting technique using transformers, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (2019), pp. 7–10
12.
Zurück zum Zitat T.R. LaRocca, K. Thai, R. Snyder, R. Jai, D. Kultran, O. Fordham, B.Y.C. Wu, Y. Yang, M.K. Watanabe, P. Rodgers, D. Lam, E.B. Nakamura, N. Daftari, F. Kamgar, Secure satellite communication digital IF CMOS Q-band transmitter and K- band receiver. IEEE J. Solid-State Circuits 54(5), 1329–1338 (2019)CrossRef T.R. LaRocca, K. Thai, R. Snyder, R. Jai, D. Kultran, O. Fordham, B.Y.C. Wu, Y. Yang, M.K. Watanabe, P. Rodgers, D. Lam, E.B. Nakamura, N. Daftari, F. Kamgar, Secure satellite communication digital IF CMOS Q-band transmitter and K- band receiver. IEEE J. Solid-State Circuits 54(5), 1329–1338 (2019)CrossRef
13.
Zurück zum Zitat M.H. Li, Y. Wang, H. Wang, A 50–67 GHz ultralow-power LNA using double-transformer-coupling technique and self-resonant matching in 90-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 32(1), 68–71 (2022)CrossRefMATH M.H. Li, Y. Wang, H. Wang, A 50–67 GHz ultralow-power LNA using double-transformer-coupling technique and self-resonant matching in 90-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 32(1), 68–71 (2022)CrossRefMATH
14.
Zurück zum Zitat Y.S. Lin, C.Z. Chen, H.Y. Yang, C.C. Chen, J.H. Lee, G.W. Huang, S.S. Lu, Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Trans. Microw. Theory Techn. 58(2), 287–296 (2010)CrossRefMATH Y.S. Lin, C.Z. Chen, H.Y. Yang, C.C. Chen, J.H. Lee, G.W. Huang, S.S. Lu, Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Trans. Microw. Theory Techn. 58(2), 287–296 (2010)CrossRefMATH
15.
Zurück zum Zitat B.Z. Lu, Y. Wang, Y. C. Wu, C.C. Chiong, H. Wang, A submilliwatt K-band low-noise amplifier for next generation radio astronomical receivers in 65-nm CMOS process. IEEE Microw. Wirel. Compon. Lett. 30(7), 669–672 (2020)CrossRefMATH B.Z. Lu, Y. Wang, Y. C. Wu, C.C. Chiong, H. Wang, A submilliwatt K-band low-noise amplifier for next generation radio astronomical receivers in 65-nm CMOS process. IEEE Microw. Wirel. Compon. Lett. 30(7), 669–672 (2020)CrossRefMATH
17.
Zurück zum Zitat P. Qin, Q. Xue, Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microw. Wirel. Compon. Lett. 27(7), 657–659 (2017)CrossRefMATH P. Qin, Q. Xue, Compact wideband LNA with gain and input matching bandwidth extensions by transformer. IEEE Microw. Wirel. Compon. Lett. 27(7), 657–659 (2017)CrossRefMATH
18.
Zurück zum Zitat B. Razavi, RF Microelectronics, 2nd ed., pp. 284–296, Upper Saddle River, NJ, USA: Pearson Education, Inc. (2011) B. Razavi, RF Microelectronics, 2nd ed., pp. 284–296, Upper Saddle River, NJ, USA: Pearson Education, Inc. (2011)
20.
Zurück zum Zitat T. Wang, H.C. Chen, H.W. Chiu, Y.S. Lin, G.W. Huang, S.S. Lu, Micromachined CMOS LNA and VCO by CMOS-compatible ICP deep trench technology. IEEE Trans. Microw. Theory Techn. 54(2), 580–588 (2006)CrossRef T. Wang, H.C. Chen, H.W. Chiu, Y.S. Lin, G.W. Huang, S.S. Lu, Micromachined CMOS LNA and VCO by CMOS-compatible ICP deep trench technology. IEEE Trans. Microw. Theory Techn. 54(2), 580–588 (2006)CrossRef
Metadaten
Titel
14.5–24.5 GHz LNA with 10.6 dB Gain Tuning Range (21.4–10.8 dB) and 2.11–3.08 dB NFavg Using Body-to-Source Floating and Mutual Coupling
verfasst von
Yo-Sheng Lin
Jin-Fa Chang
Yu-Hao Zhuang
Publikationsdatum
31.12.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02939-0