Skip to main content

2022 | OriginalPaper | Buchkapitel

6. 1D Mesoporous Inorganic Nanomaterials Applied in Rechargeable Batteries

verfasst von : Huilin Hou, Linli Xu, Weiyou Yang, Wai-Yeung Wong

Erschienen in: One-Dimensional Mesoporous Inorganic Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A rechargeable battery, a kind of electrochemical appliance, is able to convert the chemical energy to electrical energy. It should be noted that the electrode and electrolyte materials play a determinant role in the rechargeable battery characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)CrossRef P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000)CrossRef
2.
Zurück zum Zitat E. Yoo, J. Kim, E. Hosono, H.-s Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano. Lett.000000000 8(8), 2277–2282 (2008)CrossRef E. Yoo, J. Kim, E. Hosono, H.-s Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano. Lett.000000000 8(8), 2277–2282 (2008)CrossRef
3.
Zurück zum Zitat B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011)CrossRef B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011)CrossRef
4.
Zurück zum Zitat J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRef J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)CrossRef
5.
Zurück zum Zitat K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775), 885–888 (2006)CrossRef K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong, P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775), 885–888 (2006)CrossRef
6.
Zurück zum Zitat H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRef H. Wang, L.-F. Cui, Y. Yang, H. Sanchez Casalongue, J.T. Robinson, Y. Liang, Y. Cui, H. Dai, Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 132(40), 13978–13980 (2010)CrossRef
7.
Zurück zum Zitat Z. Wang, L. Zhou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries. Adv. Mater. 24(14), 1903–1911 (2012)CrossRef Z. Wang, L. Zhou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries. Adv. Mater. 24(14), 1903–1911 (2012)CrossRef
8.
Zurück zum Zitat L. Croguennec, M.R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137(9), 3140–3156 (2015)CrossRef L. Croguennec, M.R. Palacin, Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137(9), 3140–3156 (2015)CrossRef
9.
Zurück zum Zitat Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7(3), 1601481 (2017)CrossRef Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv. Energy Mater. 7(3), 1601481 (2017)CrossRef
10.
Zurück zum Zitat X. Li, F. Cheng, B. Guo, J. Chen, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109(29), 14017–14024 (2005)CrossRef X. Li, F. Cheng, B. Guo, J. Chen, Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J. Phys. Chem. B 109(29), 14017–14024 (2005)CrossRef
11.
Zurück zum Zitat D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano. Lett. 8(11), 3948–3952 (2008)CrossRef D.K. Kim, P. Muralidharan, H.-W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano. Lett. 8(11), 3948–3952 (2008)CrossRef
12.
Zurück zum Zitat X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J. Phys. Chem. C 114(39), 16806–16812 (2010)CrossRef X. Qin, X. Wang, H. Xiang, J. Xie, J. Li, Y. Zhou, Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J. Phys. Chem. C 114(39), 16806–16812 (2010)CrossRef
13.
Zurück zum Zitat J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Rhombohedral form of Li3V2 (PO4) 3 as a cathode in Li-ion batteries. Chem. Mater. 12(11), 3240–3242 (2000)CrossRef J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Rhombohedral form of Li3V2 (PO4) 3 as a cathode in Li-ion batteries. Chem. Mater. 12(11), 3240–3242 (2000)CrossRef
14.
Zurück zum Zitat J. Liu, T.E. Conry, X. Song, L. Yang, M.M. Doeff, T.J. Richardson, Spherical nanoporous LiCoPO 4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. J. Mater. Chem. 21(27), 9984–9987 (2011)CrossRef J. Liu, T.E. Conry, X. Song, L. Yang, M.M. Doeff, T.J. Richardson, Spherical nanoporous LiCoPO 4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. J. Mater. Chem. 21(27), 9984–9987 (2011)CrossRef
15.
Zurück zum Zitat L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011)CrossRef L.-X. Yuan, Z.-H. Wang, W.-X. Zhang, X.-L. Hu, J.-T. Chen, Y.-H. Huang, J.B. Goodenough, Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4(2), 269–284 (2011)CrossRef
16.
Zurück zum Zitat C. Nan, J. Lu, L. Li, L. Li, Q. Peng, Y. Li, Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano. Res. 6(7), 469–477 (2013)CrossRef C. Nan, J. Lu, L. Li, L. Li, Q. Peng, Y. Li, Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano. Res. 6(7), 469–477 (2013)CrossRef
17.
Zurück zum Zitat Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano. Lett. 14(2), 1042–1048 (2014)CrossRef Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries. Nano. Lett. 14(2), 1042–1048 (2014)CrossRef
18.
Zurück zum Zitat C. Niu, J. Meng, X. Wang, C. Han, M. Yan, K. Zhao, X. Xu, W. Ren, Y. Zhao, L. Xu, General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7462 (2015)CrossRef C. Niu, J. Meng, X. Wang, C. Han, M. Yan, K. Zhao, X. Xu, W. Ren, Y. Zhao, L. Xu, General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7462 (2015)CrossRef
19.
Zurück zum Zitat D. Ma, Y. Li, P. Zhang, A.J. Cooper, A.M. Abdelkader, X. Ren, L. Deng, Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J. Power Sources 311, 35–41 (2016)CrossRef D. Ma, Y. Li, P. Zhang, A.J. Cooper, A.M. Abdelkader, X. Ren, L. Deng, Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. J. Power Sources 311, 35–41 (2016)CrossRef
20.
Zurück zum Zitat L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)CrossRef L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4(8), 2682–2699 (2011)CrossRef
21.
Zurück zum Zitat P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015)CrossRef P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015)CrossRef
22.
Zurück zum Zitat S. Choi, T.-w Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348), 279–283 (2017)CrossRef S. Choi, T.-w Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348), 279–283 (2017)CrossRef
23.
Zurück zum Zitat M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon 38(2), 183–197 (2000)CrossRef M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries. Carbon 38(2), 183–197 (2000)CrossRef
24.
Zurück zum Zitat Y.-P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries. J. Power Sources 114(2), 228–236 (2003)CrossRef Y.-P. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries. J. Power Sources 114(2), 228–236 (2003)CrossRef
25.
Zurück zum Zitat C. De las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012)CrossRef C. De las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 208, 74–85 (2012)CrossRef
26.
Zurück zum Zitat M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19(33), 5871–5878 (2009)CrossRef M. Liang, L. Zhi, Graphene-based electrode materials for rechargeable lithium batteries. J. Mater. Chem. 19(33), 5871–5878 (2009)CrossRef
27.
Zurück zum Zitat A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014)CrossRef A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014)CrossRef
28.
Zurück zum Zitat L. Ji, Z. Lin, A.J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14), 3346–3354 (2009)CrossRef L. Ji, Z. Lin, A.J. Medford, X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14), 3346–3354 (2009)CrossRef
29.
Zurück zum Zitat Y. Xing, Y. Wang, C. Zhou, S. Zhang, B. Fang, Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage. ACS Appl. Mater. Interfaces 6(4), 2561–2567 (2014)CrossRef Y. Xing, Y. Wang, C. Zhou, S. Zhang, B. Fang, Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage. ACS Appl. Mater. Interfaces 6(4), 2561–2567 (2014)CrossRef
30.
Zurück zum Zitat D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, D. Yang, Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Sci. 1(5), 261–269 (2015)CrossRef D. Li, C. Lv, L. Liu, Y. Xia, X. She, S. Guo, D. Yang, Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Sci. 1(5), 261–269 (2015)CrossRef
31.
Zurück zum Zitat Y. Qiu, K. Yan, S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chem. Commun. 46(44), 8359 (2010)CrossRef Y. Qiu, K. Yan, S. Yang, Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. Chem. Commun. 46(44), 8359 (2010)CrossRef
32.
Zurück zum Zitat H. Jiang, H. Zhang, Y. Fu, S. Guo, Y. Hu, L. Zhang, Y. Liu, H. Liu, C. Li, Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li Ion storage. ACS Nano. 10(1), 1648–1654 (2016)CrossRef H. Jiang, H. Zhang, Y. Fu, S. Guo, Y. Hu, L. Zhang, Y. Liu, H. Liu, C. Li, Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li Ion storage. ACS Nano. 10(1), 1648–1654 (2016)CrossRef
33.
Zurück zum Zitat Y. Wang, X. Wen, J. Chen, S. Wang, Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries. J. Power Sources 281, 285–292 (2015)CrossRef Y. Wang, X. Wen, J. Chen, S. Wang, Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries. J. Power Sources 281, 285–292 (2015)CrossRef
34.
Zurück zum Zitat C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRef C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRef
35.
Zurück zum Zitat M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano. Lett. 12(5), 2318–2323 (2012)CrossRef M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano. Lett. 12(5), 2318–2323 (2012)CrossRef
36.
Zurück zum Zitat H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012)CrossRef H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012)CrossRef
37.
Zurück zum Zitat W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7(24), 1701083 (2017)CrossRef W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li, J. Yang, Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater. 7(24), 1701083 (2017)CrossRef
38.
Zurück zum Zitat X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014)CrossRef X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014)CrossRef
39.
Zurück zum Zitat C.K. Chan, R.N. Patel, M.J. O’connell, B.A. Korgel, Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano. 4(3), 1443–1450 (2010)CrossRef C.K. Chan, R.N. Patel, M.J. O’connell, B.A. Korgel, Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano. 4(3), 1443–1450 (2010)CrossRef
40.
Zurück zum Zitat S.H. Nguyen, J.C. Lim, J.K. Lee, Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries. Electrochim. Acta. 74, 53–58 (2012)CrossRef S.H. Nguyen, J.C. Lim, J.K. Lee, Electrochemical characteristics of bundle-type silicon nanorods as an anode material for lithium ion batteries. Electrochim. Acta. 74, 53–58 (2012)CrossRef
41.
Zurück zum Zitat T. Song, J. Xia, J.-H. Lee, D.H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S.K. Doo, H. Chang, W.I. Park, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano. Lett. 10(5), 1710–1716 (2010)CrossRef T. Song, J. Xia, J.-H. Lee, D.H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S.K. Doo, H. Chang, W.I. Park, Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano. Lett. 10(5), 1710–1716 (2010)CrossRef
42.
Zurück zum Zitat J. Chen, L. Yang, S. Rousidan, S. Fang, Z. Zhang, S.-i Hirano, Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale 5(21), 10623–10628 (2013)CrossRef J. Chen, L. Yang, S. Rousidan, S. Fang, Z. Zhang, S.-i Hirano, Facile fabrication of Si mesoporous nanowires for high-capacity and long-life lithium storage. Nanoscale 5(21), 10623–10628 (2013)CrossRef
43.
Zurück zum Zitat D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces 5(22), 12005–12010 (2013)CrossRef D.J. Lee, H. Lee, M.-H. Ryou, G.-B. Han, J.-N. Lee, J. Song, J. Choi, K.Y. Cho, Y.M. Lee, J.-K. Park, Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries. ACS Appl. Mater. Interfaces 5(22), 12005–12010 (2013)CrossRef
44.
Zurück zum Zitat Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, Y. Qian, Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim. Acta. 127, 252–258 (2014)CrossRef Y. Zhou, X. Jiang, L. Chen, J. Yue, H. Xu, J. Yang, Y. Qian, Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochim. Acta. 127, 252–258 (2014)CrossRef
45.
Zurück zum Zitat M.-H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotube battery anodes. Nano. Lett. 9(11), 3844–3847 (2009)CrossRef M.-H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Silicon nanotube battery anodes. Nano. Lett. 9(11), 3844–3847 (2009)CrossRef
46.
Zurück zum Zitat J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4(1), 56–72 (2011)CrossRef J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4(1), 56–72 (2011)CrossRef
47.
Zurück zum Zitat Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 29, 67–70 (2013)CrossRef Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui, K. Yu, X. Huang, P.T. Hurley, O. Mao, J. Chen, Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 29, 67–70 (2013)CrossRef
48.
Zurück zum Zitat A.T. Tesfaye, R. Gonzalez, J.L. Coffer, T. Djenizian, Porous silicon nanotube arrays as anode material for Li-Ion batteries. ACS Appl. Mater. Interfaces 7(37), 20495–20498 (2015)CrossRef A.T. Tesfaye, R. Gonzalez, J.L. Coffer, T. Djenizian, Porous silicon nanotube arrays as anode material for Li-Ion batteries. ACS Appl. Mater. Interfaces 7(37), 20495–20498 (2015)CrossRef
49.
Zurück zum Zitat M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)CrossRef M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)CrossRef
50.
Zurück zum Zitat Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016)CrossRef Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6(8), 1502175 (2016)CrossRef
51.
Zurück zum Zitat Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–664 (2006)CrossRef Y. Wang, H.C. Zeng, J.Y. Lee, Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv. Mater. 18(5), 645–664 (2006)CrossRef
52.
Zurück zum Zitat Z. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772–2778 (2007)CrossRef Z. Wen, Q. Wang, Q. Zhang, J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17(15), 2772–2778 (2007)CrossRef
53.
Zurück zum Zitat H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008)CrossRef H. Kim, J. Cho, Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 18(7), 771–775 (2008)CrossRef
54.
Zurück zum Zitat L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383–1386 (2010)CrossRef L. Li, X. Yin, S. Liu, Y. Wang, L. Chen, T. Wang, Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem. Commun. 12(10), 1383–1386 (2010)CrossRef
55.
Zurück zum Zitat H.E. Wang, L.J. Xi, R.G. Ma, Z.G. Lu, C.Y. Chung, I. Bello, J.A. Zapien, Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. J. Solid State Chem. 190, 104–110 (2012)CrossRef H.E. Wang, L.J. Xi, R.G. Ma, Z.G. Lu, C.Y. Chung, I. Bello, J.A. Zapien, Microwave-assisted hydrothermal synthesis of porous SnO2 nanotubes and their lithium ion storage properties. J. Solid State Chem. 190, 104–110 (2012)CrossRef
56.
Zurück zum Zitat X. Xu, J. Liang, H. Zhou, D. Lv, F. Liang, Z. Yang, S. Ding, D. Yu, The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage. J. Mater. Chem. A 1(9), 2995–2998 (2013)CrossRef X. Xu, J. Liang, H. Zhou, D. Lv, F. Liang, Z. Yang, S. Ding, D. Yu, The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage. J. Mater. Chem. A 1(9), 2995–2998 (2013)CrossRef
57.
Zurück zum Zitat X. Zhang, J. Liang, G. Gao, S. Ding, Z. Yang, W. Yu, B.Q. Li, The preparation of mesoporous SnO2 nanotubes by carbon nanofibers template and their lithium storage properties. Electrochim. Acta 98, 263–267 (2013)CrossRef X. Zhang, J. Liang, G. Gao, S. Ding, Z. Yang, W. Yu, B.Q. Li, The preparation of mesoporous SnO2 nanotubes by carbon nanofibers template and their lithium storage properties. Electrochim. Acta 98, 263–267 (2013)CrossRef
58.
Zurück zum Zitat H.-J. Yang, S.-C. Lim, S.-Y. He, H.-Y. Tuan, Ultralong mesoporous ZnO nanowires grown via room temperature self-assembly of ZnO nanoparticles for enhanced reversible storage in lithium ion batteries. RSC Adv. 5(42), 33392–33399 (2015)CrossRef H.-J. Yang, S.-C. Lim, S.-Y. He, H.-Y. Tuan, Ultralong mesoporous ZnO nanowires grown via room temperature self-assembly of ZnO nanoparticles for enhanced reversible storage in lithium ion batteries. RSC Adv. 5(42), 33392–33399 (2015)CrossRef
59.
Zurück zum Zitat K. Wang, M. Wei, M.A. Morris, H. Zhou, J.D. Holmes, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries. Adv Mater. 19(19), 3016–3020 (2007)CrossRef K. Wang, M. Wei, M.A. Morris, H. Zhou, J.D. Holmes, Mesoporous titania nanotubes: their preparation and application as electrode materials for rechargeable lithium batteries. Adv Mater. 19(19), 3016–3020 (2007)CrossRef
60.
Zurück zum Zitat Q. Li, J. Zhang, B. Liu, M. Li, R. Liu, X. Li, H. Ma, S. Yu, L. Wang, Y. Zou, Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47(21), 9870–9873 (2008)CrossRef Q. Li, J. Zhang, B. Liu, M. Li, R. Liu, X. Li, H. Ma, S. Yu, L. Wang, Y. Zou, Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47(21), 9870–9873 (2008)CrossRef
61.
Zurück zum Zitat B. Zhao, R. Cai, S. Jiang, Y. Sha, Z. Shao, Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochim. Acta 85, 636–643 (2012)CrossRef B. Zhao, R. Cai, S. Jiang, Y. Sha, Z. Shao, Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries. Electrochim. Acta 85, 636–643 (2012)CrossRef
62.
Zurück zum Zitat G.A. Seisenbaeva, J.-M. Nedelec, G. Daniel, C. Tiseanu, V. Parvulescu, V.G. Pol, L. Abrego, V.G. Kessler, Mesoporous anatase TiO2 nanorods as thermally robust anode materials for li-ion batteries: detailed insight into the formation mechanism. Chem. Eur. J. 19(51), 17439–17444 (2013)CrossRef G.A. Seisenbaeva, J.-M. Nedelec, G. Daniel, C. Tiseanu, V. Parvulescu, V.G. Pol, L. Abrego, V.G. Kessler, Mesoporous anatase TiO2 nanorods as thermally robust anode materials for li-ion batteries: detailed insight into the formation mechanism. Chem. Eur. J. 19(51), 17439–17444 (2013)CrossRef
63.
Zurück zum Zitat Z. Xing, A.M. Asiri, A.Y. Obaid, X. Sun, X. Ge, Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv. 4(18), 9061 (2014)CrossRef Z. Xing, A.M. Asiri, A.Y. Obaid, X. Sun, X. Ge, Carbon nanofiber-templated mesoporous TiO2 nanotubes as a high-capacity anode material for lithium-ion batteries. RSC Adv. 4(18), 9061 (2014)CrossRef
64.
Zurück zum Zitat J.-Y. Liao, A. Manthiram, Mesoporous TiO2-Sn/C core-shell nanowire arrays as high-performance 3D anodes for Li-Ion batteries. Adv. Energy Mater. 4(14), 1400403 (2014)CrossRef J.-Y. Liao, A. Manthiram, Mesoporous TiO2-Sn/C core-shell nanowire arrays as high-performance 3D anodes for Li-Ion batteries. Adv. Energy Mater. 4(14), 1400403 (2014)CrossRef
65.
Zurück zum Zitat B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4(1), 3729 (2014)CrossRef B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4(1), 3729 (2014)CrossRef
66.
Zurück zum Zitat J. Wang, J. Xie, Y. Jiang, J. Zhang, Y. Wang, Z. Zhou, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries. J. Mater. Sci. 50(19), 6321–6328 (2015)CrossRef J. Wang, J. Xie, Y. Jiang, J. Zhang, Y. Wang, Z. Zhou, Preparation of mesoporous TiO2-B nanowires from titanium glycolate and their application as an anode material for lithium-ion batteries. J. Mater. Sci. 50(19), 6321–6328 (2015)CrossRef
67.
Zurück zum Zitat W. Zhuang, L. Li, J. Zhu, R. An, L. Lu, X. Lu, X. Wu, H. Ying, Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2(3), 374–438 (2015)CrossRef W. Zhuang, L. Li, J. Zhu, R. An, L. Lu, X. Lu, X. Wu, H. Ying, Facile synthesis of mesoporous MoS2-TiO2 nanofibers for ultrastable lithium ion battery anodes. ChemElectroChem 2(3), 374–438 (2015)CrossRef
68.
Zurück zum Zitat S. Chattopadhyay, S. Maiti, I. Das, S. Mahanty, G. De, Electrospun TiO2-rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries. Adv. Mater. Interfaces 3(23), 1600761 (2016)CrossRef S. Chattopadhyay, S. Maiti, I. Das, S. Mahanty, G. De, Electrospun TiO2-rGO composite nanofibers with ordered mesopores by molecular level assembly: a high performance anode material for lithium-ion batteries. Adv. Mater. Interfaces 3(23), 1600761 (2016)CrossRef
69.
Zurück zum Zitat Z. Yuan, L. Si, D. Wei, L. Hu, Y. Zhu, X. Li, Y. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 118(10), 5091–5101 (2014)CrossRef Z. Yuan, L. Si, D. Wei, L. Hu, Y. Zhu, X. Li, Y. Qian, Vacuum topotactic conversion route to mesoporous orthorhombic MoO3 nanowire bundles with enhanced electrochemical performance. J. Phys. Chem. C 118(10), 5091–5101 (2014)CrossRef
70.
Zurück zum Zitat L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4(63), 33332 (2014)CrossRef L. Zhang, K. Zhao, W. Xu, J. Meng, L. He, Q. An, X. Xu, Y. Luo, T. Zhao, L. Mai, Mesoporous VO2 nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Adv. 4(63), 33332 (2014)CrossRef
71.
Zurück zum Zitat C. Huang, J. Fu, H. Song, X. Li, X. Peng, B. Gao, X. Zhang, P.K. Chu, General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. RSC Adv. 6(93), 90489–90493 (2016)CrossRef C. Huang, J. Fu, H. Song, X. Li, X. Peng, B. Gao, X. Zhang, P.K. Chu, General fabrication of mesoporous Nb2O5 nanobelts for lithium ion battery anodes. RSC Adv. 6(93), 90489–90493 (2016)CrossRef
72.
Zurück zum Zitat J. Liu, Q. Xia, Y. Wang, H. Xia, Mesoporous ZnCo2O4-ZnO hybrid nanotube arrays as advanced anodes for lithium-ion batteries. Mater. Lett. 193, 220–223 (2017)CrossRef J. Liu, Q. Xia, Y. Wang, H. Xia, Mesoporous ZnCo2O4-ZnO hybrid nanotube arrays as advanced anodes for lithium-ion batteries. Mater. Lett. 193, 220–223 (2017)CrossRef
73.
Zurück zum Zitat X. Tan, C. Cui, S. Wu, B. Qiu, L. Wang, J. Zhang, Nitrogen-doped mesoporous carbon-encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chem.-Asian J. 12(1), 36–40 (2017)CrossRef X. Tan, C. Cui, S. Wu, B. Qiu, L. Wang, J. Zhang, Nitrogen-doped mesoporous carbon-encapsulated MoO2 nanobelts as a high-capacity and stable host for lithium-ion storage. Chem.-Asian J. 12(1), 36–40 (2017)CrossRef
74.
Zurück zum Zitat J. Jiang, J. Liu, R. Ding, X. Ji, Y. Hu, X. Li, A. Hu, F. Wu, Z. Zhu, X. Huang, Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 114(2), 929–932 (2009)CrossRef J. Jiang, J. Liu, R. Ding, X. Ji, Y. Hu, X. Li, A. Hu, F. Wu, Z. Zhu, X. Huang, Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 114(2), 929–932 (2009)CrossRef
75.
Zurück zum Zitat Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano. Lett. 8(1), 265–270 (2008)CrossRef Y. Li, B. Tan, Y. Wu, Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano. Lett. 8(1), 265–270 (2008)CrossRef
76.
Zurück zum Zitat X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 18(37), 4397 (2008)CrossRef X.W. Lou, D. Deng, J.Y. Lee, L.A. Archer, Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 18(37), 4397 (2008)CrossRef
77.
Zurück zum Zitat L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 20(4), 617–662 (2010)CrossRef L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P.K. Shen, Q. Gao, Topotactic conversion route to mesoporous quasi-single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 20(4), 617–662 (2010)CrossRef
78.
Zurück zum Zitat D. Su, H.-S. Kim, W.-S. Kim, G. Wang, Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. Chem. Eur. J. 18(26), 8224–8229 (2012)CrossRef D. Su, H.-S. Kim, W.-S. Kim, G. Wang, Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. Chem. Eur. J. 18(26), 8224–8229 (2012)CrossRef
79.
Zurück zum Zitat H. Geng, H. Ang, X. Ding, H. Tan, G. Guo, G. Qu, Y. Yang, J. Zheng, Q. Yan, H. Gu, Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8(5), 2967–2973 (2016)CrossRef H. Geng, H. Ang, X. Ding, H. Tan, G. Guo, G. Qu, Y. Yang, J. Zheng, Q. Yan, H. Gu, Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries. Nanoscale 8(5), 2967–2973 (2016)CrossRef
80.
Zurück zum Zitat Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J. Mater. Chem. 22(38), 20566 (2012)CrossRef Z. Xiao, Y. Xia, Z. Ren, Z. Liu, G. Xu, C. Chao, X. Li, G. Shen, G. Han, Facile synthesis of single-crystalline mesoporous α-Fe2O3 and Fe3O4 nanorods as anode materials for lithium-ion batteries. J. Mater. Chem. 22(38), 20566 (2012)CrossRef
81.
Zurück zum Zitat Z. Bai, N. Fan, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. J. Mater. Chem. A 1(36), 10985–10990 (2013)CrossRef Z. Bai, N. Fan, Z. Ju, C. Guo, Y. Qian, B. Tang, S. Xiong, Facile synthesis of mesoporous Mn3O4 nanotubes and their excellent performance for lithium-ion batteries. J. Mater. Chem. A 1(36), 10985–10990 (2013)CrossRef
82.
Zurück zum Zitat Z. Bai, X. Zhang, Y. Zhang, C. Guo, B. Tang, Facile synthesis of mesoporous Mn3O4nanorods as a promising anode material for high performance lithium-ion batteries. J. Mater. Chem. A 2(39), 16755–16760 (2014)CrossRef Z. Bai, X. Zhang, Y. Zhang, C. Guo, B. Tang, Facile synthesis of mesoporous Mn3O4nanorods as a promising anode material for high performance lithium-ion batteries. J. Mater. Chem. A 2(39), 16755–16760 (2014)CrossRef
83.
Zurück zum Zitat A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces 6(17), 140827–214035 (2014)CrossRef A.K. Mondal, D. Su, S. Chen, X. Xie, G. Wang, Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl. Mater. Interfaces 6(17), 140827–214035 (2014)CrossRef
84.
Zurück zum Zitat S.-H. Park, W.-J. Lee, Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci. Rep. 5(1), 9754 (2015)CrossRef S.-H. Park, W.-J. Lee, Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries. Sci. Rep. 5(1), 9754 (2015)CrossRef
85.
Zurück zum Zitat B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4superlattice nanoribbons with optimizable lithium storage properties. J. Mate.r Chem. A 3(19), 10336–10344 (2015)CrossRef B. Li, J. Feng, Y. Qian, S. Xiong, Mesoporous quasi-single-crystalline NiCo2O4superlattice nanoribbons with optimizable lithium storage properties. J. Mate.r Chem. A 3(19), 10336–10344 (2015)CrossRef
86.
Zurück zum Zitat X.-B. Zhong, Z.-Z. Yang, H.-Y. Wang, L. Lu, B. Jin, M. Zha, Q.-C. Jiang, A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J. Power Sources 306, 718–723 (2016)CrossRef X.-B. Zhong, Z.-Z. Yang, H.-Y. Wang, L. Lu, B. Jin, M. Zha, Q.-C. Jiang, A novel approach to facilely synthesize mesoporous ZnFe2O4 nanorods for lithium ion batteries. J. Power Sources 306, 718–723 (2016)CrossRef
87.
Zurück zum Zitat C. Xu, Z. Liu, T. Wei, L. Sheng, L. Zhang, L. Chen, Q. Zhou, Z. Jiang, L. Wang, Z. Fan, Mesoporous single-crystalline MnOx nanofibers@graphene for ultra-high rate and long-life lithium-ion battery anodes. J. Mater. Chem. A 6(48), 24756–24766 (2018)CrossRef C. Xu, Z. Liu, T. Wei, L. Sheng, L. Zhang, L. Chen, Q. Zhou, Z. Jiang, L. Wang, Z. Fan, Mesoporous single-crystalline MnOx nanofibers@graphene for ultra-high rate and long-life lithium-ion battery anodes. J. Mater. Chem. A 6(48), 24756–24766 (2018)CrossRef
88.
Zurück zum Zitat Y. Ma, J. He, Z. Kou, A.M. Elshahawy, Y. Hu, C. Guan, X. Li, J. Wang, MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes. Adv. Mater. Interfaces 5(14), 1800222 (2018)CrossRef Y. Ma, J. He, Z. Kou, A.M. Elshahawy, Y. Hu, C. Guan, X. Li, J. Wang, MOF-derived vertically aligned mesoporous Co3O4 nanowires for ultrahigh capacity lithium-ion batteries anodes. Adv. Mater. Interfaces 5(14), 1800222 (2018)CrossRef
89.
Zurück zum Zitat K.-T. Chen, H.-Y. Chen, C.-J.J.E.A. Tsai, Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties. Electrochim. Acta 319(577), 586 (2019) K.-T. Chen, H.-Y. Chen, C.-J.J.E.A. Tsai, Mesoporous Sn/Mg doped ZnFe2O4 nanorods as anode with enhanced Li-ion storage properties. Electrochim. Acta 319(577), 586 (2019)
90.
Zurück zum Zitat H. Li, L.-J. Wu, S.-G. Zhang, C. Yao, C.-Y. Chao, H.-W. Yue, H.-H. Fan, Facile synthesis of mesoporous one-dimensional Fe2O3 nanowires as anode for lithium ion batteries. J. Alloys. Compd. 832, 155008 (2020)CrossRef H. Li, L.-J. Wu, S.-G. Zhang, C. Yao, C.-Y. Chao, H.-W. Yue, H.-H. Fan, Facile synthesis of mesoporous one-dimensional Fe2O3 nanowires as anode for lithium ion batteries. J. Alloys. Compd. 832, 155008 (2020)CrossRef
91.
Zurück zum Zitat M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of sno2 nanowires for application in lithium-ion batteries. Angen. Chem. 119(5), 764–767 (2007)CrossRef M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Preparation and electrochemical properties of sno2 nanowires for application in lithium-ion batteries. Angen. Chem. 119(5), 764–767 (2007)CrossRef
92.
Zurück zum Zitat C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132(1), 46–47 (2010)CrossRef C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132(1), 46–47 (2010)CrossRef
93.
Zurück zum Zitat V. Etacheri, G.A. Seisenbaeva, J. Caruthers, G. Daniel, J.M. Nedelec, V.G. Kessler, V.G. Pol, Ordered network of interconnected SnO2 nanoparticles for excellent Lithium-Ion Storage. Adv. Energy Mater. 5(5), 1401289 (2015)CrossRef V. Etacheri, G.A. Seisenbaeva, J. Caruthers, G. Daniel, J.M. Nedelec, V.G. Kessler, V.G. Pol, Ordered network of interconnected SnO2 nanoparticles for excellent Lithium-Ion Storage. Adv. Energy Mater. 5(5), 1401289 (2015)CrossRef
94.
Zurück zum Zitat T. Ma, X. Yu, H. Li, W. Zhang, X. Cheng, W. Zhu, X. Qiu, High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries. Nano. Lett. 17(6), 3959–3964 (2017)CrossRef T. Ma, X. Yu, H. Li, W. Zhang, X. Cheng, W. Zhu, X. Qiu, High volumetric capacity of hollow structured SnO2@ Si nanospheres for lithium-ion batteries. Nano. Lett. 17(6), 3959–3964 (2017)CrossRef
95.
Zurück zum Zitat X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006)CrossRef X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(17), 2325–2329 (2006)CrossRef
96.
Zurück zum Zitat R. Demir-Cakan, Y.-S. Hu, M. Antonietti, J. Maier, M.-M. Titirici, Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20(4), 1227–1229 (2008)CrossRef R. Demir-Cakan, Y.-S. Hu, M. Antonietti, J. Maier, M.-M. Titirici, Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem. Mater. 20(4), 1227–1229 (2008)CrossRef
97.
Zurück zum Zitat J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2), 296–306 (2010)CrossRef J. Ye, H. Zhang, R. Yang, X. Li, L. Qi, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2), 296–306 (2010)CrossRef
98.
Zurück zum Zitat D. Zhou, W.-L. Song, L.-Z. Fan, Hollow core–shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478 (2015)CrossRef D. Zhou, W.-L. Song, L.-Z. Fan, Hollow core–shell SnO2/C fibers as highly stable anodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(38), 21472–21478 (2015)CrossRef
99.
Zurück zum Zitat Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, L.-J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134(18), 7874–7879 (2012)CrossRef Y.-Q. Wang, L. Gu, Y.-G. Guo, H. Li, X.-Q. He, S. Tsukimoto, Y. Ikuhara, L.-J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134(18), 7874–7879 (2012)CrossRef
100.
Zurück zum Zitat Q.L. Wu, J. Li, R.D. Deshpande, N. Subramanian, S.E. Rankin, F. Yang, Y.-T. Cheng, Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J. Phys. Chem. C 116(35), 18669–18677 (2012)CrossRef Q.L. Wu, J. Li, R.D. Deshpande, N. Subramanian, S.E. Rankin, F. Yang, Y.-T. Cheng, Aligned TiO2 nanotube arrays as durable lithium-ion battery negative electrodes. J. Phys. Chem. C 116(35), 18669–18677 (2012)CrossRef
101.
Zurück zum Zitat A.A. Abdel Hamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29(32), 1701427 (2017)CrossRef A.A. Abdel Hamid, Y. Yu, J. Yang, J.Y. Ying, Generalized synthesis of metal oxide nanosheets and their application as Li-ion battery anodes. Adv. Mater. 29(32), 1701427 (2017)CrossRef
102.
Zurück zum Zitat A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862–865 (2005)CrossRef A.R. Armstrong, G. Armstrong, J. Canales, R. García, P.G. Bruce, Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17(7), 862–865 (2005)CrossRef
103.
Zurück zum Zitat H. Liu, Z. Bi, X.G. Sun, R.R. Unocic, M.P. Paranthaman, S. Dai, G.M. Brown, Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23(30), 3450–3454 (2011)CrossRef H. Liu, Z. Bi, X.G. Sun, R.R. Unocic, M.P. Paranthaman, S. Dai, G.M. Brown, Mesoporous TiO2–B microspheres with superior rate performance for lithium ion batteries. Adv. Mater. 23(30), 3450–3454 (2011)CrossRef
104.
Zurück zum Zitat S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, S. Che, Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRef S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang, S. Che, Nanosheet-constructed porous TiO2–B for advanced lithium ion batteries. Adv. Mater. 24(24), 3201–3204 (2012)CrossRef
105.
Zurück zum Zitat C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.-Y. Song, Y.-B. He, B. Li, Z. Lin, Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mate.r Chem. A 3(25), 13340–13349 (2015)CrossRef C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.-Y. Song, Y.-B. He, B. Li, Z. Lin, Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer. J. Mate.r Chem. A 3(25), 13340–13349 (2015)CrossRef
106.
Zurück zum Zitat D. Wang, D. Choi, Z. Yang, V.V. Viswanathan, Z. Nie, C. Wang, Y. Song, J.-G. Zhang, J. Liu, Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem. Mater. 20(10), 3435–3442 (2008)CrossRef D. Wang, D. Choi, Z. Yang, V.V. Viswanathan, Z. Nie, C. Wang, Y. Song, J.-G. Zhang, J. Liu, Synthesis and Li-ion insertion properties of highly crystalline mesoporous rutile TiO2. Chem. Mater. 20(10), 3435–3442 (2008)CrossRef
107.
Zurück zum Zitat N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 21(9), 1717–1722 (2011)CrossRef N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater. 21(9), 1717–1722 (2011)CrossRef
108.
Zurück zum Zitat Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem. 124(9), 2206–2209 (2012)CrossRef Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem. 124(9), 2206–2209 (2012)CrossRef
109.
Zurück zum Zitat J. Chen, L. Yang, Z. Zhang, S. Fang, S.-i Hirano, Mesoporous TiO2-Sn@ C core–shell microspheres for Li-ion batteries. Chem. Commun. 49(27), 2792–2794 (2013)CrossRef J. Chen, L. Yang, Z. Zhang, S. Fang, S.-i Hirano, Mesoporous TiO2-Sn@ C core–shell microspheres for Li-ion batteries. Chem. Commun. 49(27), 2792–2794 (2013)CrossRef
110.
Zurück zum Zitat L. Liu, Q. Fan, C. Sun, X. Gu, H. Li, F. Gao, Y. Chen, L. Dong, Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J. Power Sources 221, 141–148 (2013)CrossRef L. Liu, Q. Fan, C. Sun, X. Gu, H. Li, F. Gao, Y. Chen, L. Dong, Synthesis of sandwich-like TiO2@ C composite hollow spheres with high rate capability and stability for lithium-ion batteries. J. Power Sources 221, 141–148 (2013)CrossRef
111.
Zurück zum Zitat B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@ TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3729 (2014)CrossRef B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@ TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3729 (2014)CrossRef
112.
Zurück zum Zitat M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano. Lett. 17(6), 3830–3836 (2017)CrossRef M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano. Lett. 17(6), 3830–3836 (2017)CrossRef
113.
Zurück zum Zitat F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011)CrossRef F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011)CrossRef
114.
Zurück zum Zitat H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, D. Golberg, CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun. 48(40), 4878–4880 (2012)CrossRef H. Guan, X. Wang, H. Li, C. Zhi, T. Zhai, Y. Bando, D. Golberg, CoO octahedral nanocages for high-performance lithium ion batteries. Chem. Commun. 48(40), 4878–4880 (2012)CrossRef
115.
Zurück zum Zitat X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20(2), 258–326 (2008)CrossRef X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 20(2), 258–326 (2008)CrossRef
116.
Zurück zum Zitat J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125(25), 6545–6548 (2013)CrossRef J. Wang, N. Yang, H. Tang, Z. Dong, Q. Jin, M. Yang, D. Kisailus, H. Zhao, Z. Tang, D. Wang, Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew. Chem. 125(25), 6545–6548 (2013)CrossRef
117.
Zurück zum Zitat D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, H.D. Abruña, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano. 9(2), 1775–1781 (2015)CrossRef D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, H.D. Abruña, Template-free synthesis of hollow-structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano. 9(2), 1775–1781 (2015)CrossRef
118.
Zurück zum Zitat H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4(11), 5974–5980 (2012)CrossRef H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, Nanocrystal-constructed mesoporous single-crystalline Co3O4 nanobelts with superior rate capability for advanced lithium-ion batteries. ACS Appl. Mater. Interfaces 4(11), 5974–5980 (2012)CrossRef
119.
Zurück zum Zitat A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.-J. Ahn, G. Wang, A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 16(1), 169–175 (2015)CrossRef A.K. Mondal, D. Su, S. Chen, K. Kretschmer, X. Xie, H.-J. Ahn, G. Wang, A microwave synthesis of mesoporous NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. ChemPhysChem 16(1), 169–175 (2015)CrossRef
120.
Zurück zum Zitat L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015)CrossRef L. Shen, L. Yu, X.-Y. Yu, X. Zhang, X.W. Lou, Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem. Int. Ed. 54(6), 1868–1872 (2015)CrossRef
121.
Zurück zum Zitat J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(3), 981–988 (2013)CrossRef J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 5(3), 981–988 (2013)CrossRef
122.
Zurück zum Zitat H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016)CrossRef H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016)CrossRef
123.
Zurück zum Zitat J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano. 9(4), 3837–3848 (2015)CrossRef J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao, C. He, 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano. 9(4), 3837–3848 (2015)CrossRef
124.
Zurück zum Zitat M. Zhang, Y. Qiu, Y. Han, Y. Guo, F. Cheng, Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 322, 163–216 (2016)CrossRef M. Zhang, Y. Qiu, Y. Han, Y. Guo, F. Cheng, Three-dimensional tungsten nitride nanowires as high performance anode material for lithium ion batteries. J. Power Sources 322, 163–216 (2016)CrossRef
125.
Zurück zum Zitat H. Huang, S. Gao, A.-M. Wu, K. Cheng, X.-N. Li, X.-X. Gao, J.-J. Zhao, X.-L. Dong, G.-Z. Cao, Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano. Energy 31, 74–83 (2017)CrossRef H. Huang, S. Gao, A.-M. Wu, K. Cheng, X.-N. Li, X.-X. Gao, J.-J. Zhao, X.-L. Dong, G.-Z. Cao, Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano. Energy 31, 74–83 (2017)CrossRef
126.
Zurück zum Zitat H.-C. Park, K.-H. Lee, Y.-W. Lee, S.-J. Kim, D.-M. Kim, M.-C. Kim, K.-W. Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries. J. Power Sources 269, 534–541 (2014)CrossRef H.-C. Park, K.-H. Lee, Y.-W. Lee, S.-J. Kim, D.-M. Kim, M.-C. Kim, K.-W. Park, Mesoporous molybdenum nitride nanobelts as an anode with improved electrochemical properties in lithium ion batteries. J. Power Sources 269, 534–541 (2014)CrossRef
127.
Zurück zum Zitat P. Mei, J. Lee, M. Pramanik, A. Alshehri, J. Kim, J. Henzie, J.H. Kim, Y. Yamauchi, Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 10(23), 19739–19745 (2018)CrossRef P. Mei, J. Lee, M. Pramanik, A. Alshehri, J. Kim, J. Henzie, J.H. Kim, Y. Yamauchi, Mesoporous manganese phosphonate nanorods as a prospective anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 10(23), 19739–19745 (2018)CrossRef
128.
Zurück zum Zitat Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013)CrossRef Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52(50), 13186–13200 (2013)CrossRef
129.
Zurück zum Zitat M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015)CrossRef M. Wild, L. O’Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G.J. Offer, Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8(12), 3477–3494 (2015)CrossRef
130.
Zurück zum Zitat R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201402273 (2015)CrossRef R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Anodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201402273 (2015)CrossRef
131.
Zurück zum Zitat A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015)CrossRef A. Manthiram, S.-H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects. Adv. Mater. 27(12), 1980–2006 (2015)CrossRef
132.
Zurück zum Zitat A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013)CrossRef A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 46(5), 1125–1134 (2013)CrossRef
133.
Zurück zum Zitat S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201500117 (2015)CrossRef S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 5(16), 201500117 (2015)CrossRef
134.
Zurück zum Zitat Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016)CrossRef Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45(20), 5605–5634 (2016)CrossRef
135.
Zurück zum Zitat X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P.K. Chu, K. Huo, Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano. Energy 40, 655–662 (2017)CrossRef X. Li, K. Ding, B. Gao, Q. Li, Y. Li, J. Fu, X. Zhang, P.K. Chu, K. Huo, Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano. Energy 40, 655–662 (2017)CrossRef
136.
Zurück zum Zitat L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059 (2011)CrossRef L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 4(12), 5053–5059 (2011)CrossRef
137.
Zurück zum Zitat L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, S. Fan, Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano. 10(1), 1300–1308 (2016)CrossRef L. Sun, D. Wang, Y. Luo, K. Wang, W. Kong, Y. Wu, L. Zhang, K. Jiang, Q. Li, Y. Zhang, J. Wang, S. Fan, Sulfur embedded in a mesoporous carbon nanotube network as a binder-free electrode for high-performance lithium-sulfur batteries. ACS Nano. 10(1), 1300–1308 (2016)CrossRef
138.
Zurück zum Zitat X. Shan, Z. Guo, X. Zhang, J. Yang, L. Duan, Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced lithium-sulfur batteries. Chin. J. Mech. Eng. 32(1), 1–6 (2019). CrossRef X. Shan, Z. Guo, X. Zhang, J. Yang, L. Duan, Mesoporous TiO2 nanofiber as highly efficient sulfur host for advanced lithium-sulfur batteries. Chin. J. Mech. Eng. 32(1), 1–6 (2019). CrossRef
139.
Zurück zum Zitat T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006)CrossRef T. Ogasawara, A. Débart, M. Holzapfel, P. Novák, P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128(4), 1390–1393 (2006)CrossRef
140.
Zurück zum Zitat J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.-G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano. Lett. 11(11), 5071–5078 (2011)CrossRef J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G.L. Graff, W.D. Bennett, Z. Nie, L.V. Saraf, I.A. Aksay, J. Liu, J.-G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode. Nano. Lett. 11(11), 5071–5078 (2011)CrossRef
141.
Zurück zum Zitat Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery. Science 337(6094), 563–566 (2012)CrossRef Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery. Science 337(6094), 563–566 (2012)CrossRef
142.
Zurück zum Zitat J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L.A. Curtiss, K. Amine, A lithium–oxygen battery based on lithium superoxide. Nature 529(7586), 377–382 (2016)CrossRef J. Lu, Y. Jung Lee, X. Luo, K. Chun Lau, M. Asadi, H.-H. Wang, S. Brombosz, J. Wen, D. Zhai, Z. Chen, D.J. Miller, Y. Sub Jeong, J.-B. Park, Z. Zak Fang, B. Kumar, A. Salehi-Khojin, Y.-K. Sun, L.A. Curtiss, K. Amine, A lithium–oxygen battery based on lithium superoxide. Nature 529(7586), 377–382 (2016)CrossRef
143.
Zurück zum Zitat B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)CrossRef B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future. J. Power Sources 195(9), 2419–2430 (2010)CrossRef
144.
Zurück zum Zitat G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1(14), 2193–2203 (2010).CrossRef G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium−air battery: promise and challenges. J. Phys. Chem. Lett. 1(14), 2193–2203 (2010).CrossRef
145.
Zurück zum Zitat A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. 120(24), 4597–4600 (2008)CrossRef A. Débart, A.J. Paterson, J. Bao, P.G. Bruce, α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. 120(24), 4597–4600 (2008)CrossRef
146.
Zurück zum Zitat A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2(3), 176–184 (2011)CrossRef A. Manthiram, Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2(3), 176–184 (2011)CrossRef
147.
Zurück zum Zitat Q. Liu, Y. Jiang, J. Xu, D. Xu, Z. Chang, Y. Yin, W. Liu, X. Zhang, Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano. Res. 8(2), 576–583 (2014)CrossRef Q. Liu, Y. Jiang, J. Xu, D. Xu, Z. Chang, Y. Yin, W. Liu, X. Zhang, Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries. Nano. Res. 8(2), 576–583 (2014)CrossRef
148.
Zurück zum Zitat B. Wu, H. Zhang, W. Zhou, M. Wang, X. Li, H. Zhang, Carbon-free CoO mesoporous nanowire array cathode for high-performance aprotic Li–O2 batteries. ACS Appl. Mater. Interfaces 7(41), 23182–23189 (2015)CrossRef B. Wu, H. Zhang, W. Zhou, M. Wang, X. Li, H. Zhang, Carbon-free CoO mesoporous nanowire array cathode for high-performance aprotic Li–O2 batteries. ACS Appl. Mater. Interfaces 7(41), 23182–23189 (2015)CrossRef
149.
Zurück zum Zitat S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano. 9(2), 1945–1954 (2015)CrossRef S. Peng, L. Li, Y. Hu, M. Srinivasan, F. Cheng, J. Chen, S. Ramakrishna, Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano. 9(2), 1945–1954 (2015)CrossRef
150.
Zurück zum Zitat K.-N. Jung, J.-I. Lee, W.B. Im, S. Yoon, K.-H. Shin, J.-W. Lee, Promoting Li2O2 oxidation by an layered perovskite in lithium-oxygen batteries. Chem. Commun. 48(75), 9406–9408 (2012)CrossRef K.-N. Jung, J.-I. Lee, W.B. Im, S. Yoon, K.-H. Shin, J.-W. Lee, Promoting Li2O2 oxidation by an layered perovskite in lithium-oxygen batteries. Chem. Commun. 48(75), 9406–9408 (2012)CrossRef
151.
Zurück zum Zitat J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential. Sci. Rep. 4, 6005 (2014)CrossRef J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Porous perovskite LaNiO3 nanocubes as cathode catalysts for Li-O2 batteries with low charge potential. Sci. Rep. 4, 6005 (2014)CrossRef
152.
Zurück zum Zitat M. Sun, L. Zou, Z. Wang, S. Guo, Y. Chen, B. Chi, J. Pu, J. Li, Porous nanocubes La0.9Co0.8Ni0.2O3-x as efficient catalyst for Li-O2 batteries. Electrochim. Acta 327, 135017 (2019)CrossRef M. Sun, L. Zou, Z. Wang, S. Guo, Y. Chen, B. Chi, J. Pu, J. Li, Porous nanocubes La0.9Co0.8Ni0.2O3-x as efficient catalyst for Li-O2 batteries. Electrochim. Acta 327, 135017 (2019)CrossRef
153.
Zurück zum Zitat Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. 109(48), 19569–19574 (2012)CrossRef Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, Q. Zhang, Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.91 nanowires with ultrahigh capacity for Li-air batteries. Proc. Natl. Acad. Sci. 109(48), 19569–19574 (2012)CrossRef
154.
Zurück zum Zitat J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, X.-B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 52(14), 3887–3890 (2013)CrossRef J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, X.-B. Zhang, Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 52(14), 3887–3890 (2013)CrossRef
155.
Zurück zum Zitat M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013)CrossRef M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013)CrossRef
156.
Zurück zum Zitat N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)CrossRef N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014)CrossRef
157.
Zurück zum Zitat S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012)CrossRef S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2(7), 710–721 (2012)CrossRef
158.
Zurück zum Zitat L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015)CrossRef L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries. J. Mater. Chem. A 3(18), 9353–9378 (2015)CrossRef
159.
Zurück zum Zitat H. Liu, Y. Liu, 1D mesoporous NaTi2(PO4)3/carbon nanofiber: The promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018)CrossRef H. Liu, Y. Liu, 1D mesoporous NaTi2(PO4)3/carbon nanofiber: The promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018)CrossRef
160.
Zurück zum Zitat T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-Ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017)CrossRef T. Jin, Y. Liu, Y. Li, K. Cao, X. Wang, L. Jiao, Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-Ion batteries. Adv. Energy Mater. 7(15), 1700087 (2017)CrossRef
161.
Zurück zum Zitat P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.-C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25(17), 3480–3487 (2013)CrossRef P. Barpanda, G. Liu, C.D. Ling, M. Tamaru, M. Avdeev, S.-C. Chung, Y. Yamada, A. Yamada, Na2FeP2O7: a safe cathode for rechargeable sodium-ion batteries. Chem. Mater. 25(17), 3480–3487 (2013)CrossRef
162.
Zurück zum Zitat X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015)CrossRef X. Xiang, K. Zhang, J. Chen, Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 27(36), 5343–5364 (2015)CrossRef
163.
Zurück zum Zitat M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015)CrossRef M.H. Han, E. Gonzalo, G. Singh, T. Rojo, A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy Environ. Sci. 8(1), 81–102 (2015)CrossRef
164.
Zurück zum Zitat Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)CrossRef Z. Jian, W. Han, X. Lu, H. Yang, Y.-S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, L. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)CrossRef
165.
Zurück zum Zitat K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3(4), 444–450 (2013)CrossRef K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 3(4), 444–450 (2013)CrossRef
166.
Zurück zum Zitat J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6(10), 5081–5086 (2014)CrossRef J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6(10), 5081–5086 (2014)CrossRef
167.
Zurück zum Zitat Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27(39), 5895–5900 (2015)CrossRef Y. Fang, L. Xiao, X. Ai, Y. Cao, H. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27(39), 5895–5900 (2015)CrossRef
168.
Zurück zum Zitat X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27(42), 6670–6676 (2015)CrossRef X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27(42), 6670–6676 (2015)CrossRef
169.
Zurück zum Zitat R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11), 639–642 (2001)CrossRef R. Alcántara, J.M. Jiménez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries. Electrochem. Commun. 3(11), 639–642 (2001)CrossRef
170.
Zurück zum Zitat J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 7(12), 11004–11015 (2013)CrossRef J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, B. Zahiri, X. Tan, E.M. Lotfabad, B.C. Olsen, D. Mitlin, Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano. 7(12), 11004–11015 (2013)CrossRef
171.
Zurück zum Zitat L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3), 1384–1389 (2014)CrossRef L. Fu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Nitrogen doped porous carbon fibers as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6(3), 1384–1389 (2014)CrossRef
172.
Zurück zum Zitat Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016)CrossRef Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, S. Ramakrishna, Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries. Carbon 99, 556–563 (2016)CrossRef
173.
Zurück zum Zitat Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016)CrossRef Y. Wu, X. Liu, Z. Yang, L. Gu, Y. Yu, Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries. Small 12(26), 3522–3529 (2016)CrossRef
174.
Zurück zum Zitat L. Wu, J. Lang, R. Wang, R. Guo, X. Yan, Electrospinning synthesis of mesoporous MnCoNiOx@Double-carbon nanofibers for sodium-ion battery anodes with pseudocapacitive behavior and long cycle life. ACS Appl. Mater. Interfaces 8(50), 34342–34352 (2016)CrossRef L. Wu, J. Lang, R. Wang, R. Guo, X. Yan, Electrospinning synthesis of mesoporous MnCoNiOx@Double-carbon nanofibers for sodium-ion battery anodes with pseudocapacitive behavior and long cycle life. ACS Appl. Mater. Interfaces 8(50), 34342–34352 (2016)CrossRef
175.
Zurück zum Zitat G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014)CrossRef G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7(4), 1307–1338 (2014)CrossRef
176.
Zurück zum Zitat Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren, Z.-Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 25(47), 7337–7347 (2015)CrossRef Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren, Z.-Y. Yuan, Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Adv. Funct. Mater. 25(47), 7337–7347 (2015)CrossRef
177.
Zurück zum Zitat L. Mai, J. Sheng, L. Xu, S. Tan, J. Meng, One-dimensional hetero-nanostructures for rechargeable batteries. Acc Chem. Res. 51(4), 950–959 (2018)CrossRef L. Mai, J. Sheng, L. Xu, S. Tan, J. Meng, One-dimensional hetero-nanostructures for rechargeable batteries. Acc Chem. Res. 51(4), 950–959 (2018)CrossRef
178.
Zurück zum Zitat Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015)CrossRef Y. Liu, N. Zhang, L. Jiao, J. Chen, Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 27(42), 6702–6707 (2015)CrossRef
179.
Zurück zum Zitat L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016)CrossRef L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang, S. Qiao, Flexible SnO2/N-doped carbon nanofiber films as integrated electrodes for lithium-ion batteries with superior rate capacity and long cycle life. Small 12(7), 853–859 (2016)CrossRef
180.
Zurück zum Zitat W. Li, M. Li, M. Wang, L. Zeng, Y. Yu, Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano. Energy 13, 693–701 (2015)CrossRef W. Li, M. Li, M. Wang, L. Zeng, Y. Yu, Electrospinning with partially carbonization in air: highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano. Energy 13, 693–701 (2015)CrossRef
181.
Zurück zum Zitat M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 201602868 (2017)CrossRef M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 201602868 (2017)CrossRef
182.
Zurück zum Zitat J. Liu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano. Lett. 14(5), 2597–2603 (2014)CrossRef J. Liu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano. Lett. 14(5), 2597–2603 (2014)CrossRef
Metadaten
Titel
1D Mesoporous Inorganic Nanomaterials Applied in Rechargeable Batteries
verfasst von
Huilin Hou
Linli Xu
Weiyou Yang
Wai-Yeung Wong
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89105-3_6