Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2021

10.01.2020

2D Pose-Invariant Face Recognition Using Single Frontal-View Face Database

verfasst von: Chayanut Petpairote, Suthep Madarasmi, Kosin Chamnongthai

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Personal identification systems that use face recognition work well for test images with frontal view face, but often fail when the input face is a pose view. Most face databases come from picture ID sources such as passports or driver’s licenses. In such databases, only the frontal view is available. This paper proposes a method of 2D pose-invariant face recognition that assumes the search database contains only frontal view faces. Given a non-frontal view of a test face, the pose-view angle is first calculated by matching the test image with a database of canonical faces with head rotations to find the best matched image. This database of canonical faces is used only to find the head rotation. The database does not contain images of the test face itself, but has a selection of template faces, each face having rotation images of − 45°, − 30°, − 15°, 0°, 15°, 30°, and 45°. The landmark features in the best matched rotated canonical face such as say rotation 15° and it’s corresponding frontal face of rotation 0° are used to create a warp transformation to convert the 15° rotated test face to a frontal face. This warp will introduce some distortion artifacts since some features of the non-frontal input face are not visible due to self-occlusion. The warped image is, therefore, enhanced by mixing intensities using the left/right facial symmetry assumption. The enhanced synthesized frontal face image is then used to find the best match target in the frontal face database. We test our approach using CMU Multi-PIE database images. Our method performs with acceptable and similar accuracy to conventional methods, while using only frontal faces in the test database.
Literatur
1.
Zurück zum Zitat Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM Computing Surveys, 35(4), 399–458. CrossRef Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face recognition: A literature survey. ACM Computing Surveys, 35(4), 399–458. CrossRef
2.
Zurück zum Zitat Hassaballah, M., & Aly, S. (2015). Face recognition: Challenges, achievements and future directions. IET Computer Vision, 9(4), 614–626. CrossRef Hassaballah, M., & Aly, S. (2015). Face recognition: Challenges, achievements and future directions. IET Computer Vision, 9(4), 614–626. CrossRef
3.
Zurück zum Zitat Ding, C., & Tao, D. (2016). A comprehensive survey on pose-invariant face recognition. ACM Transactions on Intelligent Systems and Technology, 7(3), 37:1–37:42. CrossRef Ding, C., & Tao, D. (2016). A comprehensive survey on pose-invariant face recognition. ACM Transactions on Intelligent Systems and Technology, 7(3), 37:1–37:42. CrossRef
4.
Zurück zum Zitat Blanz, V., & Vetter, T. (2003). Face recognition based on fitting a 3d morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(9), 1063–1074. CrossRef Blanz, V., & Vetter, T. (2003). Face recognition based on fitting a 3d morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(9), 1063–1074. CrossRef
5.
Zurück zum Zitat Lee, M. W., & Ranganath, S. (2003). Pose-invariant face recognition using a 3d deformable model. Pattern Recognition, 36(8), 835–1846. Lee, M. W., & Ranganath, S. (2003). Pose-invariant face recognition using a 3d deformable model. Pattern Recognition, 36(8), 835–1846.
6.
Zurück zum Zitat Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., & Gao, W. (2005). Efficient 3d reconstruction for face recognition. Pattern Recognition, 38(6), 787–798. CrossRef Jiang, D., Hu, Y., Yan, S., Zhang, L., Zhang, H., & Gao, W. (2005). Efficient 3d reconstruction for face recognition. Pattern Recognition, 38(6), 787–798. CrossRef
7.
Zurück zum Zitat Asthana, A., Marks, T. K., Jones, M. J., Tieu, K. H., & Rohith, M. (2011). Fully automatic pose invariant face recognition via 3d pose normalization. In IEEE conference on computer vision and pattern recognition, pp. 937–944. Asthana, A., Marks, T. K., Jones, M. J., Tieu, K. H., & Rohith, M. (2011). Fully automatic pose invariant face recognition via 3d pose normalization. In IEEE conference on computer vision and pattern recognition, pp. 937–944.
8.
Zurück zum Zitat Yi, D., Lei, Z., & Li, S. Z. (2013). Towards pose robust face recognition. In IEEE conference on computer vision and pattern recognition, pp. 3539–3545. Yi, D., Lei, Z., & Li, S. Z. (2013). Towards pose robust face recognition. In IEEE conference on computer vision and pattern recognition, pp. 3539–3545.
9.
Zurück zum Zitat Ding, C., Xu, C., & Tao, D. (2015). Multi-task pose-invariant face recognition. IEEE Transactions on Image Processing, 24(3), 980–993. MathSciNetCrossRef Ding, C., Xu, C., & Tao, D. (2015). Multi-task pose-invariant face recognition. IEEE Transactions on Image Processing, 24(3), 980–993. MathSciNetCrossRef
10.
Zurück zum Zitat Ding, C., & Tao, D. (2017). Pose-invariant face recognition with homography-based normalization. Pattern Recognition, 66, 144–152. CrossRef Ding, C., & Tao, D. (2017). Pose-invariant face recognition with homography-based normalization. Pattern Recognition, 66, 144–152. CrossRef
11.
Zurück zum Zitat Gross, R., Mattews, I., & Baker, S. (2004). Appearance-based face recognition and light-fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(4), 449–465. CrossRef Gross, R., Mattews, I., & Baker, S. (2004). Appearance-based face recognition and light-fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(4), 449–465. CrossRef
12.
Zurück zum Zitat Chai, X., Shan, S., & Chen, X. (2007). Locally linear regression for pose-invariant face recognition. IEEE Transactions on Image Processing, 16(7), 1716–1725. MathSciNetCrossRef Chai, X., Shan, S., & Chen, X. (2007). Locally linear regression for pose-invariant face recognition. IEEE Transactions on Image Processing, 16(7), 1716–1725. MathSciNetCrossRef
13.
Zurück zum Zitat Ashraf, A. B., Lucey, S., & Chen, T. (2008). Learning patch correspondences for improved viewpoint invariant face recognition. In IEEE conference on computer vision and pattern recognition, pp. 1–8. Ashraf, A. B., Lucey, S., & Chen, T. (2008). Learning patch correspondences for improved viewpoint invariant face recognition. In IEEE conference on computer vision and pattern recognition, pp. 1–8.
14.
Zurück zum Zitat Gao, H., Ekenel, H. K., & Stiefelhagen, R. (2009). Pose normalization for local appearance based face recognition. In International conference on advances in biometrics, pp. 32–41. Gao, H., Ekenel, H. K., & Stiefelhagen, R. (2009). Pose normalization for local appearance based face recognition. In International conference on advances in biometrics, pp. 32–41.
15.
Zurück zum Zitat Ho, H. T., & Chellappa, R. (2013). Pose-invariant face recognition using Markov random fields. IEEE Transactions on Image Processing, 22(4), 1573–1584. MathSciNetCrossRef Ho, H. T., & Chellappa, R. (2013). Pose-invariant face recognition using Markov random fields. IEEE Transactions on Image Processing, 22(4), 1573–1584. MathSciNetCrossRef
16.
Zurück zum Zitat Kan, M., Shan, S., Chang, H., & Chen, X. (2014). Stacked progressive auto-encoders (SPAE) for face recognition across poses. In IEEE conference on computer vision and pattern recognition. Kan, M., Shan, S., Chang, H., & Chen, X. (2014). Stacked progressive auto-encoders (SPAE) for face recognition across poses. In IEEE conference on computer vision and pattern recognition.
17.
Zurück zum Zitat Zhu, Z., Luo, P., Wang, X., & Tang, X. (2013). Deep learning identity-preserving face space. In IEEE conference on computer vision and pattern recognition, pp. 113–120. Zhu, Z., Luo, P., Wang, X., & Tang, X. (2013). Deep learning identity-preserving face space. In IEEE conference on computer vision and pattern recognition, pp. 113–120.
18.
Zurück zum Zitat Zhang, Y., Shao, M., Wong, E. K., & Fu, Y. (2013). Random faces guided sparse many-to-one encoder for pose-invariant face recognition. In IEEE conference on computer vision and pattern recognition, pp. 2416–2423. Zhang, Y., Shao, M., Wong, E. K., & Fu, Y. (2013). Random faces guided sparse many-to-one encoder for pose-invariant face recognition. In IEEE conference on computer vision and pattern recognition, pp. 2416–2423.
19.
Zurück zum Zitat Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., & Kim, J. (2015). Rotating your face using multitask deep neural network. In IEEE conference on computer vision and pattern recognition, pp. 676–684. Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., & Kim, J. (2015). Rotating your face using multitask deep neural network. In IEEE conference on computer vision and pattern recognition, pp. 676–684.
20.
Zurück zum Zitat Gentle, J. E. (2007). Matrix transformations and factorizations. In Matrix algebra: Theory, computations, and applications in statistics. Springer. ISBN 9780387708737. Gentle, J. E. (2007). Matrix transformations and factorizations. In Matrix algebra: Theory, computations, and applications in statistics. Springer. ISBN 9780387708737.
21.
Zurück zum Zitat Gross, R., Matthews, I., Cohn, J., Kanade, T., & Baker, S. (2009). Multi-PIE. Image and Vision Computing, 28, 807–813. CrossRef Gross, R., Matthews, I., Cohn, J., Kanade, T., & Baker, S. (2009). Multi-PIE. Image and Vision Computing, 28, 807–813. CrossRef
23.
Zurück zum Zitat Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685. CrossRef Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685. CrossRef
24.
Zurück zum Zitat Cristinacce, D., & Cootes, T. F. (2006). Feature detection and tracking with constrained local models. In British Machine Vision Conference, Vol. 3, pp. 929–938. Cristinacce, D., & Cootes, T. F. (2006). Feature detection and tracking with constrained local models. In British Machine Vision Conference, Vol. 3, pp. 929–938.
25.
Zurück zum Zitat Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In IEEE conference on computer vision and pattern recognition. 10.1109/CVPR.2012.6248014. Zhu, X., & Ramanan, D. (2012). Face detection, pose estimation, and landmark localization in the wild. In IEEE conference on computer vision and pattern recognition. 10.1109/CVPR.2012.6248014.
26.
Zurück zum Zitat Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In British Machine Vision Conference, pp. 1–12. Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep face recognition. In British Machine Vision Conference, pp. 1–12.
27.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolution networks for large-scale image recognition. arXiv:1409.1556. Simonyan, K., & Zisserman, A. (2014). Very deep convolution networks for large-scale image recognition. arXiv:1409.1556.
28.
Zurück zum Zitat Matthews, I., & Baker, S. (2004). Active appearance models revisited. International Journal of Computer Vision, 60(2), 135–164. CrossRef Matthews, I., & Baker, S. (2004). Active appearance models revisited. International Journal of Computer Vision, 60(2), 135–164. CrossRef
30.
Zurück zum Zitat Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86. CrossRef Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86. CrossRef
31.
Zurück zum Zitat Timo, A., Abdenour, H., & Matti, P. (2004). Face recognition with local binary patterns. In European Conference on computer vision, pp. 469–481. Timo, A., Abdenour, H., & Matti, P. (2004). Face recognition with local binary patterns. In European Conference on computer vision, pp. 469–481.
32.
Zurück zum Zitat Arqub, O. A., & Abo-Hammour, Z. (2014). Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Information Sciences, 279, 396–415. MathSciNetCrossRef Arqub, O. A., & Abo-Hammour, Z. (2014). Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Information Sciences, 279, 396–415. MathSciNetCrossRef
33.
Zurück zum Zitat Arqub, O. A., Smadi, M. A., Momani, S., & Hayat, T. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 20(8), 3283–3302. CrossRef Arqub, O. A., Smadi, M. A., Momani, S., & Hayat, T. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 20(8), 3283–3302. CrossRef
34.
Zurück zum Zitat Sim, T., Baker, S., & Bsat, M. (2002). The CMU pose, illumination, and expression (PIE) database. In International conference auto face and gesture recognition, Washington, DC, pp. 46–51. Sim, T., Baker, S., & Bsat, M. (2002). The CMU pose, illumination, and expression (PIE) database. In International conference auto face and gesture recognition, Washington, DC, pp. 46–51.
35.
Zurück zum Zitat Lin, J., Ming, J., & Crookes, D. (2011). Robust face recognition with partial occlusion, illumination variation and limited training data by optimal feature selection. IET Computer Vision, 5(1), 23–32. MathSciNetCrossRef Lin, J., Ming, J., & Crookes, D. (2011). Robust face recognition with partial occlusion, illumination variation and limited training data by optimal feature selection. IET Computer Vision, 5(1), 23–32. MathSciNetCrossRef
36.
Zurück zum Zitat Kafai, M., An, L., & Bhanu, B. (2014). Reference face graph for face recognition. IEEE Transactions on Information Forensics and Security, 9(12), 2132–2143. CrossRef Kafai, M., An, L., & Bhanu, B. (2014). Reference face graph for face recognition. IEEE Transactions on Information Forensics and Security, 9(12), 2132–2143. CrossRef
Metadaten
Titel
2D Pose-Invariant Face Recognition Using Single Frontal-View Face Database
verfasst von
Chayanut Petpairote
Suthep Madarasmi
Kosin Chamnongthai
Publikationsdatum
10.01.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07063-1

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Guest Editorial

Guest Editorial Column