Skip to main content

2017 | OriginalPaper | Buchkapitel

4. 3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam

verfasst von : Shinji Matsui, Hiroaki Misawa, Quan Sun

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we describe three-dimensional (3-D) nanostructure fabrication techniques using focused-ion-beam (FIB)-induced chemical vapor deposition (CVD), electron-beam (EB)-induced CVD, and femtosecond laser (fs-laser) techniques. We first describe 30 keV Ga+ FIB-induced CVD using a phenanthrene (C14H10) source gas as the precursor. A diamond-like amorphous carbon film is deposited during this process; it has a Young's modulus exceeding 600 GPa, making it potentially highly desirable for various applications. A three-dimensional pattern generator system has been developed to make arbitrary three-dimensional nanostructures. We also discuss microstructure plastic art, which is a new field that has been made possible by microbeam technology, and we present examples of such art, including a micro wine glass with an external diameter of 2.75 μm and a height of 12 μm. We then discuss free-space nanowiring and show by using a mixture of C14H10 and W ( CO)6 that the electrical properties indicate an increase in metal content results in a lower resistivity. We also demonstrate that a Morpho butterfly scale quasistructure fabricated by FIB-induced CVD has almost the same optical characteristics as a real Morpho butterfly scale. We then discuss three-dimensional nanostructure fabrication using EB-induced CVD. Because of the nanometer resolution, EB-induced CVD is now indispensable for mask repair techniques for the 193 nm node. According to real-time observations by transmission electron microscopy, the W clusters, as the initial growth stage, are formed first followed by the W layer which forms as W clusters coalesce due to EB irradiation. We go on to discuss photonic crystals and Smith–Purcell electron optics as examples of three-dimensional nanostructure applications using EB-induced CVD. Finally, we describe femtosecond-laser-assisted micro/nano fabrication which has been recognized as a promising technique to fabricate three-dimensional structures inside transparent materials. The spatial resolution can reach submicrometer levels and even tens of nanometers owing to suppression of the involved heat diffusion and nonlinear adsorption. We discuss three-dimensional femtosecond laser nanofabrication using the direct laser writing technique and multiple beam interference lithography and describe the fabrication of photonic crystals in a photoresist.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.1
Zurück zum Zitat S. Matsui: Nanostructure fabrication using electron beam and its application to nanometer devices, Proc. IEEE 85, 629–642 (1997)CrossRef S. Matsui: Nanostructure fabrication using electron beam and its application to nanometer devices, Proc. IEEE 85, 629–642 (1997)CrossRef
4.2
Zurück zum Zitat A. Wargner, J.P. Levin, J.L. Mauer, P.G. Blauner, S.J. Kirch, P. Long: X-ray mask repair with focused ion beams, J. Vac. Sci. Technol. B 8, 1557–1564 (1990)CrossRef A. Wargner, J.P. Levin, J.L. Mauer, P.G. Blauner, S.J. Kirch, P. Long: X-ray mask repair with focused ion beams, J. Vac. Sci. Technol. B 8, 1557–1564 (1990)CrossRef
4.3
Zurück zum Zitat O. Lehmann, M. Stuke: Generation of three-dimensional free-standing metal micro-objects by laser chemical processing, Appl. Phys. A 53, 343–345 (1991)CrossRef O. Lehmann, M. Stuke: Generation of three-dimensional free-standing metal micro-objects by laser chemical processing, Appl. Phys. A 53, 343–345 (1991)CrossRef
4.4
Zurück zum Zitat H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)CrossRef H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)CrossRef
4.5
Zurück zum Zitat S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 18, 3181–3184 (2000)CrossRef S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 18, 3181–3184 (2000)CrossRef
4.6
Zurück zum Zitat H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef
4.7
Zurück zum Zitat K. Kand, J. Igaki, Y. Kato, R. Kometani, A. Saikubo, S. Matsui: NEXAFA study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition, Radiat. Phys. Chem. 75, 1850–1854 (2006)CrossRef K. Kand, J. Igaki, Y. Kato, R. Kometani, A. Saikubo, S. Matsui: NEXAFA study on carbon-based material formed by focused-ion-beam chemical-vapor-deposition, Radiat. Phys. Chem. 75, 1850–1854 (2006)CrossRef
4.8
Zurück zum Zitat J. Igaki, A. Saikubo, R. Kometani, K. Kanda, T. Suzuki, K. Niihara, S. Matsui: Elementary analysis of diamond-like carbon film formed by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 46, 8003–8004 (2007)CrossRef J. Igaki, A. Saikubo, R. Kometani, K. Kanda, T. Suzuki, K. Niihara, S. Matsui: Elementary analysis of diamond-like carbon film formed by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 46, 8003–8004 (2007)CrossRef
4.9
Zurück zum Zitat T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor-deposition, J. Vac. Sci. Technol. B 21, 2732–2736 (2003)CrossRef T. Hoshino, K. Watanabe, R. Kometani, T. Morita, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Development of three-dimensional pattern-generating system for focused-ion-beam chemical-vapor-deposition, J. Vac. Sci. Technol. B 21, 2732–2736 (2003)CrossRef
4.10
Zurück zum Zitat R. Kometani, S. Ishihara, T. Kaito, S. Matsui: In situ observation of the three-dimensional nano-structure growth on focused-ion-beam chemical vapor deposition by scanning electron microscope, Appl. Phys. Express 1, 055001 (2008)CrossRef R. Kometani, S. Ishihara, T. Kaito, S. Matsui: In situ observation of the three-dimensional nano-structure growth on focused-ion-beam chemical vapor deposition by scanning electron microscope, Appl. Phys. Express 1, 055001 (2008)CrossRef
4.11
Zurück zum Zitat E. Buks, M.L. Roukes: Stiction, adhesion energy and the Casimir effect in micromechanical systems, Phys. Rev. B 63, 033402 (2001)CrossRef E. Buks, M.L. Roukes: Stiction, adhesion energy and the Casimir effect in micromechanical systems, Phys. Rev. B 63, 033402 (2001)CrossRef
4.12
Zurück zum Zitat J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition, J. Vac. Sci. Technol. B 19, 2834–2837 (2001)CrossRef J. Fujita, M. Ishida, T. Sakamoto, Y. Ochiai, T. Kaito, S. Matsui: Observation and characteristics of mechanical vibration in three-dimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition, J. Vac. Sci. Technol. B 19, 2834–2837 (2001)CrossRef
4.13
Zurück zum Zitat M. Ishida, J. Fujita, Y. Ochiai: Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition, J. Vac. Sci. Technol. B 20, 2784–2787 (2002)CrossRef M. Ishida, J. Fujita, Y. Ochiai: Density estimation for amorphous carbon nanopillars grown by focused ion beam assisted chemical vapor deposition, J. Vac. Sci. Technol. B 20, 2784–2787 (2002)CrossRef
4.14
Zurück zum Zitat T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137–3142 (2004)CrossRef T. Morita, K. Nakamatsu, K. Kanda, Y. Haruyama, K. Kondo, T. Hoshino, T. Kaito, J. Fujita, T. Ichihashi, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Nanomechanical switch fabrication by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 22, 3137–3142 (2004)CrossRef
4.15
Zurück zum Zitat R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Characteristic of nano-electrostatic actuator fabricated by focused ion beam chemical vapor deposition, Jpn. J. Appl. Phys. 43, 7187–7191 (2004)CrossRef R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Characteristic of nano-electrostatic actuator fabricated by focused ion beam chemical vapor deposition, Jpn. J. Appl. Phys. 43, 7187–7191 (2004)CrossRef
4.16
Zurück zum Zitat R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Jpn. J. Appl. Phys. 42, 4107–4110 (2003)CrossRef R. Kometani, T. Morita, K. Watanabe, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Nozzle-nanostructure fabrication on glass capillary by focused-ion-beam chemical vapor deposition and etching, Jpn. J. Appl. Phys. 42, 4107–4110 (2003)CrossRef
4.17
Zurück zum Zitat R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 23, 298–301 (2005)CrossRef R. Kometani, T. Hoshino, K. Kondo, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Performance of nanomanipulator fabricated on glass capillary by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 23, 298–301 (2005)CrossRef
4.18
Zurück zum Zitat R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical vapor deposition, Nucl. Instrum. Methods. Phys. Res. B 232, 362–366 (2005)CrossRef R. Kometani, T. Hoshino, K. Kanda, Y. Haruyama, T. Kaito, J. Fujita, M. Ishida, Y. Ochiai, S. Matsui: Three-dimensional high-performance nano-tools fabricated using focused-ion-beam chemical vapor deposition, Nucl. Instrum. Methods. Phys. Res. B 232, 362–366 (2005)CrossRef
4.19
Zurück zum Zitat K. Nakamatsu, M. Nagase, H. Namatsu, S. Matsui: Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 44, L1228–L1230 (2005)CrossRef K. Nakamatsu, M. Nagase, H. Namatsu, S. Matsui: Mechanical characteristics of diamond-like-carbon nanosprings fabricated by focused-ion-beam chemical vapor deposition, Jpn. J. Appl. Phys. 44, L1228–L1230 (2005)CrossRef
4.20
Zurück zum Zitat T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 21, 2737–2741 (2003)CrossRef T. Morita, R. Kometani, K. Watanabe, K. Kanda, Y. Haruyama, T. Hoshino, K. Kondo, T. Kaito, T. Ichihashi, J. Fujita, M. Ishida, Y. Ochiai, T. Tajima, S. Matsui: Free-space-wiring fabrication in nano-space by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 21, 2737–2741 (2003)CrossRef
4.21
Zurück zum Zitat J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui: Graphitization of Fe-doped amorphous carbon pillars grown by focused ion-beam-induced chemical-vapor deposition, J. Vac. Sci. Technol. B 20, 2686–2689 (2002)CrossRef J. Fujita, M. Ishida, T. Ichihashi, Y. Ochiai, T. Kaito, S. Matsui: Graphitization of Fe-doped amorphous carbon pillars grown by focused ion-beam-induced chemical-vapor deposition, J. Vac. Sci. Technol. B 20, 2686–2689 (2002)CrossRef
4.22
Zurück zum Zitat D. Guo, R. Kometani, S. Warisawa, S. Ishihara: Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 31, 061601 (2013)CrossRef D. Guo, R. Kometani, S. Warisawa, S. Ishihara: Growth of ultra-long free-space-nanowire by the real-time feedback control of the scanning speed on focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 31, 061601 (2013)CrossRef
4.23
Zurück zum Zitat R. Kometani, S. Warisawa, S. Ishihara: The 3-D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng. 87, 1044–1048 (2010)CrossRef R. Kometani, S. Warisawa, S. Ishihara: The 3-D nanostructure growth evaluations by the real-time current monitoring on focused-ion-beam chemical vapor deposition, Microelectron. Eng. 87, 1044–1048 (2010)CrossRef
4.24
Zurück zum Zitat K. Nakamatsu, K. Yamamoto, T. Hirayama, S. Matsui: Fabrication of fine electron biprism filament by free-space-nanowiring technique of focused-ion-beam + chemical vapor deposition for accurate off-axis electron holography, Appl. Phys. Express 1, 117004 (2008)CrossRef K. Nakamatsu, K. Yamamoto, T. Hirayama, S. Matsui: Fabrication of fine electron biprism filament by free-space-nanowiring technique of focused-ion-beam + chemical vapor deposition for accurate off-axis electron holography, Appl. Phys. Express 1, 117004 (2008)CrossRef
4.25
Zurück zum Zitat R. Kometani, K. Yusa, S. Warisawa, S. Ishihara: Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 28, C6F38–41 (2010)CrossRef R. Kometani, K. Yusa, S. Warisawa, S. Ishihara: Piezoresistive effect in the three-dimensional diamondlike carbon nanostructure fabricated by focused-ion-beam chemical vapor deposition, J. Vac. Sci. Technol. B 28, C6F38–41 (2010)CrossRef
4.26
Zurück zum Zitat J. Dai, K. Onomitsu, R. Kometani, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6and C14H10, Jpn. J. Appl. Phys. 52, 075001 (2013)CrossRef J. Dai, K. Onomitsu, R. Kometani, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6and C14H10, Jpn. J. Appl. Phys. 52, 075001 (2013)CrossRef
4.27
Zurück zum Zitat J. Dai, R. Kometani, K. Onomitsu, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapor deposition, J. Micromech. Microeng. 24, 055015 (2014)CrossRef J. Dai, R. Kometani, K. Onomitsu, Y. Krockenberger, H. Yamaguchi, S. Ishihara, S. Warisawa: Direct fabrication of a W-C SNS Josephson junction using focused-ion-beam chemical vapor deposition, J. Micromech. Microeng. 24, 055015 (2014)CrossRef
4.28
Zurück zum Zitat P. Vukusic, J.R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)CrossRef P. Vukusic, J.R. Sambles: Photonic structures in biology, Nature 424, 852–855 (2003)CrossRef
4.29
Zurück zum Zitat K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Jpn. J. Appl. Phys. 44, L48–L50 (2005)CrossRef K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, S. Matsui: Brilliant blue observation from a morpho-butterfly-scale quasi-structure, Jpn. J. Appl. Phys. 44, L48–L50 (2005)CrossRef
4.30
Zurück zum Zitat A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron-beam fabrication of 80-Å metal structures, Appl. Phys. Lett. 29, 596–597 (1976)CrossRef A.N. Broers, W.W. Molzen, J.J. Cuomo, N.D. Wittels: Electron-beam fabrication of 80-Å metal structures, Appl. Phys. Lett. 29, 596–597 (1976)CrossRef
4.31
Zurück zum Zitat S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, Jpn. J. Appl. Phys. 23, L706–L708 (1984)CrossRef S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, Jpn. J. Appl. Phys. 23, L706–L708 (1984)CrossRef
4.32
Zurück zum Zitat S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B 4, 299–304 (1986)CrossRef S. Matsui, K. Mori: New selective deposition technology by electron beam induced surface reaction, J. Vac. Sci. Technol. B 4, 299–304 (1986)CrossRef
4.33
Zurück zum Zitat H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: High-resolution electron-beam induced deposition, J. Vac. Sci. Technol. B 6, 477–481 (1988)CrossRef H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum: High-resolution electron-beam induced deposition, J. Vac. Sci. Technol. B 6, 477–481 (1988)CrossRef
4.34
Zurück zum Zitat S. Matsui, T. Ichihashi, M. Mito: Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182–1190 (1989)CrossRef S. Matsui, T. Ichihashi, M. Mito: Electron beam induced selective etching and deposition technology, J. Vac. Sci. Technol. B 7, 1182–1190 (1989)CrossRef
4.35
Zurück zum Zitat Y. Ochiai, J. Fujita, S. Matsui: Electron-beam-induced deposition of copper compound with low resistivity, J. Vac. Sci. Technol. B 14, 3887–3891 (1996)CrossRef Y. Ochiai, J. Fujita, S. Matsui: Electron-beam-induced deposition of copper compound with low resistivity, J. Vac. Sci. Technol. B 14, 3887–3891 (1996)CrossRef
4.36
Zurück zum Zitat I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168–3171 (2000)CrossRef I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, P. Doppelt: Focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 18, 3168–3171 (2000)CrossRef
4.37
Zurück zum Zitat H.W.P. Koops, A. Reinhardt, F. Klabunde, A. Kaya, R. Plontke: Vapor supply manifold for additive nanolithography with electron beam induced deposition, Microcircuit Eng. 57/58, 909–913 (2001)CrossRef H.W.P. Koops, A. Reinhardt, F. Klabunde, A. Kaya, R. Plontke: Vapor supply manifold for additive nanolithography with electron beam induced deposition, Microcircuit Eng. 57/58, 909–913 (2001)CrossRef
4.38
Zurück zum Zitat U. Hübner, R. Plontke, M. Blume, A. Reinhardt, H.W.P. Koops: On-line nanolithography using electron beam-induced deposition technique, Microelectron. Eng. 57/58, 953–958 (2001)CrossRef U. Hübner, R. Plontke, M. Blume, A. Reinhardt, H.W.P. Koops: On-line nanolithography using electron beam-induced deposition technique, Microelectron. Eng. 57/58, 953–958 (2001)CrossRef
4.39
Zurück zum Zitat H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Böttger, A. Kuligk, C. Liguda, M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared, Microelectron. Eng. 57/58, 995–1001 (2001)CrossRef H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Böttger, A. Kuligk, C. Liguda, M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared, Microelectron. Eng. 57/58, 995–1001 (2001)CrossRef
4.40
Zurück zum Zitat F. Floreani, H.W.P. Koops, W. Elsäßer: Operation of high power field emitter fabricated with electron beam deposition and concept of a miniaturized free electron laser, Microelectron. Eng. 57/58, 1009–1016 (2001)CrossRef F. Floreani, H.W.P. Koops, W. Elsäßer: Operation of high power field emitter fabricated with electron beam deposition and concept of a miniaturized free electron laser, Microelectron. Eng. 57/58, 1009–1016 (2001)CrossRef
4.41
Zurück zum Zitat K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons, Appl. Phys. Lett. 83, 2064–2066 (2003)CrossRef K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons, Appl. Phys. Lett. 83, 2064–2066 (2003)CrossRef
4.42
Zurück zum Zitat M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya: Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure, Appl. Phys. A 79, 1869–1872 (2004)CrossRef M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya: Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure, Appl. Phys. A 79, 1869–1872 (2004)CrossRef
4.43
Zurück zum Zitat M. Tanaka, M. Shimojo, M. Han, K. Mitsuishi, K. Furuya: Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope, Surf. Interface Anal. 37, 261–264 (2005)CrossRef M. Tanaka, M. Shimojo, M. Han, K. Mitsuishi, K. Furuya: Ultimate sized nano-dots formed by electron beam-induced deposition using an ultrahigh vacuum transmission electron microscope, Surf. Interface Anal. 37, 261–264 (2005)CrossRef
4.44
Zurück zum Zitat I. Utke, V. Friedli, M. Purrucker, J. Michler: Resolution in focused electron- and ion-beam induced processing, J. Vac. Sci. Technol. B 25, 2219–2223 (2007)CrossRef I. Utke, V. Friedli, M. Purrucker, J. Michler: Resolution in focused electron- and ion-beam induced processing, J. Vac. Sci. Technol. B 25, 2219–2223 (2007)CrossRef
4.45
Zurück zum Zitat J.D. Barry, M. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Melngailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4, J. Vac. Sci. Technol. B 24, 3165–3168 (2006)CrossRef J.D. Barry, M. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Melngailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4, J. Vac. Sci. Technol. B 24, 3165–3168 (2006)CrossRef
4.46
Zurück zum Zitat A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann: Focused electron beam induced deposition of nickel, J. Vac. Sci. Technol. B 25, 2228–2232 (2007)CrossRef A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann: Focused electron beam induced deposition of nickel, J. Vac. Sci. Technol. B 25, 2228–2232 (2007)CrossRef
4.47
Zurück zum Zitat A. Botman, D.A.M. de Winter, J.J.L. Muders: Electron-beam-induced deposition of platinum at low landing energies, J. Vac. Sci. Technol. B 26, 2460–2463 (2008)CrossRef A. Botman, D.A.M. de Winter, J.J.L. Muders: Electron-beam-induced deposition of platinum at low landing energies, J. Vac. Sci. Technol. B 26, 2460–2463 (2008)CrossRef
4.48
Zurück zum Zitat A. Botman, M. Hesselberth, J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition, J. Vac. Sci. Technol. B 26, 2464–2467 (2008)CrossRef A. Botman, M. Hesselberth, J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition, J. Vac. Sci. Technol. B 26, 2464–2467 (2008)CrossRef
4.49
Zurück zum Zitat S.J. Randolph, J.D. Fowlkes, P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)CrossRef S.J. Randolph, J.D. Fowlkes, P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci. 31, 55–89 (2006)CrossRef
4.50
Zurück zum Zitat W.F. von Dorp, C.W. Hagen: A critical literature review of focused electron beam induced deposition, J. Appl. Phys. 104, 081301 (2008)CrossRef W.F. von Dorp, C.W. Hagen: A critical literature review of focused electron beam induced deposition, J. Appl. Phys. 104, 081301 (2008)CrossRef
4.51
Zurück zum Zitat I. Utke, P. Hoffmann, J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B 26, 1197–1276 (2008)CrossRef I. Utke, P. Hoffmann, J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication, J. Vac. Sci. Technol. B 26, 1197–1276 (2008)CrossRef
4.52
Zurück zum Zitat J. Bishop, C.J. Lobo, A. Martin, M. Ford, M. Phillips, M. Toth: Role of activated chemisorption in gas-mediated electron beam induced deposition, Phys. Rev. Lett. 109, 146103 (2012)CrossRef J. Bishop, C.J. Lobo, A. Martin, M. Ford, M. Phillips, M. Toth: Role of activated chemisorption in gas-mediated electron beam induced deposition, Phys. Rev. Lett. 109, 146103 (2012)CrossRef
4.53
Zurück zum Zitat N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit: The role of secondary electrons in electron-beam-induced deposition spacial resolution, Microelectron. Eng. 61/62, 693–699 (2002)CrossRef N. Silvis-Cividjian, C.W. Hagen, L.H.A. Leunissen, P. Kruit: The role of secondary electrons in electron-beam-induced deposition spacial resolution, Microelectron. Eng. 61/62, 693–699 (2002)CrossRef
4.54
Zurück zum Zitat V. Friedli, I. Utke, K. Mølhave, J. Michler: Dose and energy dependence of mechanical properties of focused electron-beam induced pillar deposits from Cu(C5HF6O2)2, Nanotechnology 20, 385304 (2009)CrossRef V. Friedli, I. Utke, K. Mølhave, J. Michler: Dose and energy dependence of mechanical properties of focused electron-beam induced pillar deposits from Cu(C5HF6O2)2, Nanotechnology 20, 385304 (2009)CrossRef
4.55
Zurück zum Zitat R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T.H. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. De Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders: Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties, Nanotechnology 22, 025302 (2011)CrossRef R. Lavrijsen, R. Córdoba, F.J. Schoenaker, T.H. Ellis, B. Barcones, J.T. Kohlhepp, H.J.M. Swagten, B. Koopmans, J.M. De Teresa, C. Magen, M.R. Ibarra, P. Trompenaars, J.J.L. Mulders: Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties, Nanotechnology 22, 025302 (2011)CrossRef
4.56
Zurück zum Zitat T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt: Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 23, 3174–3177 (2005)CrossRef T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt: Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold, J. Vac. Sci. Technol. B 23, 3174–3177 (2005)CrossRef
4.57
Zurück zum Zitat S. Graells, R. Alcubilla, G. Badenes, R. Quidant: Growth of plasmonic gold nanostructures by electron beam induced deposition, Appl. Phys. Lett. 91, 121112 (2007)CrossRef S. Graells, R. Alcubilla, G. Badenes, R. Quidant: Growth of plasmonic gold nanostructures by electron beam induced deposition, Appl. Phys. Lett. 91, 121112 (2007)CrossRef
4.58
Zurück zum Zitat A. Fernández-Pacheco, J.M. de Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition, Appl. Phys. Lett. 94, 192509 (2009)CrossRef A. Fernández-Pacheco, J.M. de Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn: Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition, Appl. Phys. Lett. 94, 192509 (2009)CrossRef
4.59
Zurück zum Zitat J. Pablo-Navarro, C. Magén, J.M. de Teresa: Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition, Nanotechnology 27, 285302 (2016)CrossRef J. Pablo-Navarro, C. Magén, J.M. de Teresa: Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition, Nanotechnology 27, 285302 (2016)CrossRef
4.60
Zurück zum Zitat H. Acar, T. Coenen, A. Polman, L.K. Kuipers: Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition, ACS Nano 6, 8226–8232 (2012)CrossRef H. Acar, T. Coenen, A. Polman, L.K. Kuipers: Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition, ACS Nano 6, 8226–8232 (2012)CrossRef
4.61
Zurück zum Zitat P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, G. Leuchs: Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition, Nanotechnology 27, 025705 (2016)CrossRef P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, G. Leuchs: Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition, Nanotechnology 27, 025705 (2016)CrossRef
4.62
Zurück zum Zitat I. Utke, S. Moshkalev, P. Russel (Eds.): Nanofabrication Using Focused Ion and Electron-Beams (Oxford Univ. Press, Oxford 2012) I. Utke, S. Moshkalev, P. Russel (Eds.): Nanofabrication Using Focused Ion and Electron-Beams (Oxford Univ. Press, Oxford 2012)
4.63
Zurück zum Zitat S. Matsui, K. Mori: In situ observation on electron beam induced chemical vapor deposition by Auger electron spectroscopy, Appl. Phys. Lett. 51, 646–648 (1987)CrossRef S. Matsui, K. Mori: In situ observation on electron beam induced chemical vapor deposition by Auger electron spectroscopy, Appl. Phys. Lett. 51, 646–648 (1987)CrossRef
4.64
Zurück zum Zitat S. Matsui, T. Ichihashi: In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy, Appl. Phys. Lett. 53, 842–844 (1988)CrossRef S. Matsui, T. Ichihashi: In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy, Appl. Phys. Lett. 53, 842–844 (1988)CrossRef
4.65
Zurück zum Zitat V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo: Three-dimensional nanohelices for chiral photonics, Appl. Phys. A 122, 280 (2016)CrossRef V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo: Three-dimensional nanohelices for chiral photonics, Appl. Phys. A 122, 280 (2016)CrossRef
4.66
Zurück zum Zitat S. Juodkazis, V. Mizeikis, H. Misawa: Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J Appl. Phys. 106, 051101 (2009)CrossRef S. Juodkazis, V. Mizeikis, H. Misawa: Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J Appl. Phys. 106, 051101 (2009)CrossRef
4.67
Zurück zum Zitat K. Sugioka, Y. Cheng: Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, e149 (2014)CrossRef K. Sugioka, Y. Cheng: Ultrafast lasers-reliable tools for advanced materials processing, Light Sci. Appl. 3, e149 (2014)CrossRef
4.68
Zurück zum Zitat J.F. Herbstman, A.J. Hunt: High-aspect ratio nanochannel formation by single femtosecond laser pulses, Opt. Express 18, 16840–16848 (2010)CrossRef J.F. Herbstman, A.J. Hunt: High-aspect ratio nanochannel formation by single femtosecond laser pulses, Opt. Express 18, 16840–16848 (2010)CrossRef
4.69
Zurück zum Zitat E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis: Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010)CrossRef E. Brasselet, M. Malinauskas, A. Zukauskas, S. Juodkazis: Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010)CrossRef
4.70
Zurück zum Zitat S. Maruo, K. Ikuta, H. Korogi: Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett. 82, 133 (2003)CrossRef S. Maruo, K. Ikuta, H. Korogi: Submicron manipulation tools driven by light in a liquid, Appl. Phys. Lett. 82, 133 (2003)CrossRef
4.71
Zurück zum Zitat Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata: 3-D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5, 1144–1148 (2009) Y.Y. Cao, N. Takeyasu, T. Tanaka, X.M. Duan, S. Kawata: 3-D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction, Small 5, 1144–1148 (2009)
4.72
Zurück zum Zitat Y.J. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J.H. Teng, A.A. Bettiol: Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications, Opt. Mater. Express 1, 1548–1554 (2011)CrossRef Y.J. Yan, M.I. Rashad, E.J. Teo, H. Tanoto, J.H. Teng, A.A. Bettiol: Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications, Opt. Mater. Express 1, 1548–1554 (2011)CrossRef
4.73
Zurück zum Zitat D.X. Liu, Y.L. Sun, W.F. Dong, R.Z. Yang, Q.D. Chen, H.B. Sun: Dynamic laser prototyping for biomimetic nanofabrication, Laser Photonics Rev. 8, 882–888 (2014)CrossRef D.X. Liu, Y.L. Sun, W.F. Dong, R.Z. Yang, Q.D. Chen, H.B. Sun: Dynamic laser prototyping for biomimetic nanofabrication, Laser Photonics Rev. 8, 882–888 (2014)CrossRef
4.74
Zurück zum Zitat T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener: Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337–339 (2010)CrossRef T. Ergin, N. Stenger, P. Brenner, J.B. Pendry, M. Wegener: Three-dimensional invisibility cloak at optical wavelengths, Science 328, 337–339 (2010)CrossRef
4.75
Zurück zum Zitat H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef H.B. Sun, S. Matsuo, H. Misawa: Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999)CrossRef
4.76
Zurück zum Zitat B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51–54 (1999)CrossRef B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry: Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication, Nature 398, 51–54 (1999)CrossRef
4.77
Zurück zum Zitat K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17, 541–545 (2005)CrossRef K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, H. Misawa: Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17, 541–545 (2005)CrossRef
4.78
Zurück zum Zitat K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa: Spiral three-dimensional photonic crystals for telecommunications spectral range, Appl. Phys. A 82, 683–688 (2006)CrossRef K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa: Spiral three-dimensional photonic crystals for telecommunications spectral range, Appl. Phys. A 82, 683–688 (2006)CrossRef
4.79
Zurück zum Zitat A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov: Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17, 2143–2148 (2009)CrossRef A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov: Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials, Opt. Express 17, 2143–2148 (2009)CrossRef
4.80
Zurück zum Zitat S.R. Kennedy, M.J. Brett, O. Toader, S. John: Fabrication of tetragonal square spiral photonic crystals, Nano Lett. 2, 59–62 (2002)CrossRef S.R. Kennedy, M.J. Brett, O. Toader, S. John: Fabrication of tetragonal square spiral photonic crystals, Nano Lett. 2, 59–62 (2002)CrossRef
4.81
Zurück zum Zitat Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa: Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010)CrossRef Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa: Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010)CrossRef
4.82
Zurück zum Zitat K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, S. John: Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. 14, 1064–1073 (2008)CrossRef K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, S. John: Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. 14, 1064–1073 (2008)CrossRef
4.83
Zurück zum Zitat Q. Sun, K. Ueno, H. Misawa: In situ investigation of the shrinkage of photopolymerized micro–nanostructures: The effect of the drying process, Opt. Lett. 37, 710–712 (2012)CrossRef Q. Sun, K. Ueno, H. Misawa: In situ investigation of the shrinkage of photopolymerized micro–nanostructures: The effect of the drying process, Opt. Lett. 37, 710–712 (2012)CrossRef
4.84
Zurück zum Zitat V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, H. Misawa: Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007)CrossRef V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K. Juodkazis, H. Misawa: Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007)CrossRef
Metadaten
Titel
3-D Nanostructure Fabrication by Focused-Ion Beam, Electron- and Laser Beam
verfasst von
Shinji Matsui
Hiroaki Misawa
Quan Sun
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_4

Neuer Inhalt