Skip to main content

2013 | OriginalPaper | Buchkapitel

3D Algorithm for Simulation of Soft Tissue Cutting

verfasst von : Xia Jin, Grand Roman Joldes, Karol Miller, Adam Wittek

Erschienen in: Computational Biomechanics for Medicine

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modelling and simulation of soft tissue cutting in 3D remain one of the most challenging problems in surgery simulation, not only because of the nonlinear geometric and material behaviour exhibited by soft tissue but also due to the complexity of introducing the cutting-induced discontinuity. In most publications, the progressive surgical cutting is modelled by conventional finite element (FE) method, in which the high computational cost and error accumulation due to re-meshing constrain the computational efficiency and accuracy. In this paper, a meshless Total Lagrangian Adaptive Dynamic Relaxation (MTLADR) 3D cutting algorithm is proposed to predict the steady-state responses of soft tissue at any stage of surgical cutting in 3D. The MTLADR 3D algorithm features a spatial discretisation using a cloud of nodes. With the benefits of no meshing and no re-meshing, the cutting-induced discontinuity is modelled and simulated by adding nodes on the cutting faces and implementing the visibility criterion with the aid of the level set method. The accuracy of the MTLADR 3D cutting algorithm is verified against the established nonlinear solution procedures available in commercial FE software Abaqus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993) Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)
2.
Zurück zum Zitat Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)CrossRef Miller, K., Chinzei, K., Orssengo, G., Bednarz, P.: Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J. Biomech. 33, 1369–1376 (2000)CrossRef
3.
Zurück zum Zitat Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., Miller, K.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Meth. Biomech. Biomed. Eng. 11, 135–146 (2008) Wittek, A., Dutta-Roy, T., Taylor, Z., Horton, A., Washio, T., Chinzei, K., Miller, K.: Subject-specific non-linear biomechanical model of needle insertion into brain. Comput. Meth. Biomech. Biomed. Eng. 11, 135–146 (2008)
4.
Zurück zum Zitat Mor, A.B.: Progressive Cutting with Minimal New Element Creation of Soft Tissue Models for Interactive Surgical Simulation. Carnegie Mellon University, Pittsburgh (2001) Mor, A.B.: Progressive Cutting with Minimal New Element Creation of Soft Tissue Models for Interactive Surgical Simulation. Carnegie Mellon University, Pittsburgh (2001)
5.
Zurück zum Zitat Bruyns, C.D., Senger, S., Menon, A., Montgomery, K., Wildermuth, S., Boyle, R.: A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh-cutting using virtual tools. J. Visualization Comput. Anim. 13, 21–42 (2002)MATHCrossRef Bruyns, C.D., Senger, S., Menon, A., Montgomery, K., Wildermuth, S., Boyle, R.: A survey of interactive mesh-cutting techniques and a new method for implementing generalized interactive mesh-cutting using virtual tools. J. Visualization Comput. Anim. 13, 21–42 (2002)MATHCrossRef
6.
Zurück zum Zitat Bielser, D., Glardon, P., Teschner, M., Gross, M.: A state machine for real-time cutting of tetrahedral meshes. Graph. Model. 66, 398–417 (2004)MATHCrossRef Bielser, D., Glardon, P., Teschner, M., Gross, M.: A state machine for real-time cutting of tetrahedral meshes. Graph. Model. 66, 398–417 (2004)MATHCrossRef
7.
Zurück zum Zitat Courtecuisse, H., Jung, H., Allard, J., Duriez, C.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103, 159–168 (2010)CrossRef Courtecuisse, H., Jung, H., Allard, J., Duriez, C.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103, 159–168 (2010)CrossRef
8.
Zurück zum Zitat Belytschko, T., Tabbara, M.: Dynamic fracture using element-free Galerkin methods. Int. J. Numer. Meth. Eng. 39, 923–938 (1996)MATHCrossRef Belytschko, T., Tabbara, M.: Dynamic fracture using element-free Galerkin methods. Int. J. Numer. Meth. Eng. 39, 923–938 (1996)MATHCrossRef
9.
Zurück zum Zitat Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452 (2000)MATHCrossRef Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis. Comput. 16, 437–452 (2000)MATHCrossRef
10.
Zurück zum Zitat Wu, W., Heng, P.A.: An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis. Comput. 21, 707–716 (2005)CrossRef Wu, W., Heng, P.A.: An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis. Comput. 21, 707–716 (2005)CrossRef
11.
Zurück zum Zitat Jin, X., Joldes, G.R., Miller, K., Yang, K.H., Wittek, A.: Meshless algorithm for simulation of soft tissue cutting for surgical simulation. Comput. Meth. Biomech. Biomed. Eng. accepted subject to revision (2012) Jin, X., Joldes, G.R., Miller, K., Yang, K.H., Wittek, A.: Meshless algorithm for simulation of soft tissue cutting for surgical simulation. Comput. Meth. Biomech. Biomed. Eng. accepted subject to revision (2012)
12.
Zurück zum Zitat Underwood, P.: Dynamic relaxation. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, pp. 245–265. New-Holland, Amsterdam (1983) Underwood, P.: Dynamic relaxation. In: Belytschko, T., Hughes, T.J.R. (eds.) Computational Methods for Transient Analysis, pp. 245–265. New-Holland, Amsterdam (1983)
13.
Zurück zum Zitat Joldes, G.R., Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Meth. Biomed. Eng. 27, 173–185 (2011)MathSciNetMATHCrossRef Joldes, G.R., Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems. Application to brain shift estimation. Int. J. Numer. Meth. Biomed. Eng. 27, 173–185 (2011)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Meth. Appl. Mech. Eng. 198, 3313–3320 (2009)MathSciNetMATHCrossRef Joldes, G.R., Wittek, A., Miller, K.: Computation of intra-operative brain shift using dynamic relaxation. Comput. Meth. Appl. Mech. Eng. 198, 3313–3320 (2009)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetMATHCrossRef Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Stolarska, M., Chopp, D.L., Moes, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Meth. Eng. 51, 943–960 (2001)MATHCrossRef Stolarska, M., Chopp, D.L., Moes, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Meth. Eng. 51, 943–960 (2001)MATHCrossRef
17.
Zurück zum Zitat Bucholz, R., MacNeil, W., McDurmont, L.: The operating room of the future. Clin. Neurosurg. 51, 228–237 (2004) Bucholz, R., MacNeil, W., McDurmont, L.: The operating room of the future. Clin. Neurosurg. 51, 228–237 (2004)
Metadaten
Titel
3D Algorithm for Simulation of Soft Tissue Cutting
verfasst von
Xia Jin
Grand Roman Joldes
Karol Miller
Adam Wittek
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6351-1_6

Neuer Inhalt