Skip to main content
Erschienen in: Journal of Computational Electronics 1/2018

11.10.2017

3D analytical modeling of surface potential, threshold voltage, and subthreshold swing in dual-material-gate (DMG) SOI FinFETs

verfasst von: Rajesh Saha, Srimanta Baishya, Brinda Bhowmick

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Here, we develop a 3D analytical model for potential in a lightly doped dual-material-gate FinFET in the subthreshold region. The model is based on the perimeter-weighted sum of a dual-material double-gate (DMDG) asymmetric MOSFET and a DMDG symmetric MOSFET. The potential model is used to determine the minimum surface potential needed to obtain the threshold voltage \((V_{\mathrm{T}})\) and subthreshold swing (SS) by considering the source barrier changes in the leakiest channel path. The proposed model is capable of reducing the drain-induced barrier lowering (DIBL) as well as the hot carrier effects offered by this device. The impact of control gate ratio and work function difference between the two metal gates on \(V_{\mathrm{T}}\) and SS are also correctly established by the model. All model derivations are validated by comparing the results with technology computer-aided design (TCAD) simulation data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE. 89(3), 259–287 (2001)CrossRef Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE. 89(3), 259–287 (2001)CrossRef
2.
Zurück zum Zitat Yeo, Y.C., King, T.J., Hu, C.: MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans. Electron. Devices 50(4), 1027–1035 (2003)CrossRef Yeo, Y.C., King, T.J., Hu, C.: MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations. IEEE Trans. Electron. Devices 50(4), 1027–1035 (2003)CrossRef
3.
Zurück zum Zitat Orouji, A.A., Rahimian, M.: Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr. Appl. Phys. 12(5), 1366–1371 (2012)CrossRef Orouji, A.A., Rahimian, M.: Leakage current reduction in nanoscale fully-depleted SOI MOSFETs with modified current mechanism. Curr. Appl. Phys. 12(5), 1366–1371 (2012)CrossRef
4.
Zurück zum Zitat Kumar, M.J., Chaudhry, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron. Devices 51(4), 569–574 (2004)CrossRef Kumar, M.J., Chaudhry, A.: Two-dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron. Devices 51(4), 569–574 (2004)CrossRef
5.
Zurück zum Zitat Pal, A., Sarkar, A.: Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. Int. J. 17, 205–212 (2014)CrossRef Pal, A., Sarkar, A.: Analytical study of dual material surrounding gate MOSFET to suppress short-channel effects (SCEs). Eng. Sci. Technol. Int. J. 17, 205–212 (2014)CrossRef
6.
Zurück zum Zitat Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron. Devices 46(5), 865–870 (1999)CrossRef Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron. Devices 46(5), 865–870 (1999)CrossRef
7.
Zurück zum Zitat Zhou, X.: Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFETs) with gate-material engineering. IEEE Trans. Electron. Devices 47(1), 113–120 (2000)MathSciNetCrossRef Zhou, X.: Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFETs) with gate-material engineering. IEEE Trans. Electron. Devices 47(1), 113–120 (2000)MathSciNetCrossRef
8.
Zurück zum Zitat Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Rafhay, Q., Pananakakis, G., Ghibaudo, G.: Semianalytical modeling of short-channel effects in Si and Ge symmetrical double gate MOSFETs. IEEE Trans. Electron. Devices 54(8), 1943–1951 (2007)CrossRef Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Rafhay, Q., Pananakakis, G., Ghibaudo, G.: Semianalytical modeling of short-channel effects in Si and Ge symmetrical double gate MOSFETs. IEEE Trans. Electron. Devices 54(8), 1943–1951 (2007)CrossRef
9.
Zurück zum Zitat Wong, H.S.P., Frank, D.J., Solomon, P.M.: Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. In: International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217), pp. 407–410. San Francisco. USA (1998) Wong, H.S.P., Frank, D.J., Solomon, P.M.: Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. In: International Electron Devices Meeting 1998. Technical Digest (Cat. No. 98CH36217), pp. 407–410. San Francisco. USA (1998)
10.
Zurück zum Zitat Reddy, G.V., Kumar, M.J.: A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 4(2), 260–268 (2005)CrossRef Reddy, G.V., Kumar, M.J.: A new dual-material double-gate (DMDG) nanoscale SOI MOSFET-two-dimensional analytical modeling and simulation. IEEE Trans. Nanotechnol. 4(2), 260–268 (2005)CrossRef
11.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–41 (2011)CrossRef Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–41 (2011)CrossRef
12.
Zurück zum Zitat Lou, H., et al.: A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron. Devices 59(7), 1829–1836 (2012)CrossRef Lou, H., et al.: A junctionless nanowire transistor with a dual-material gate. IEEE Trans. Electron. Devices 59(7), 1829–1836 (2012)CrossRef
13.
Zurück zum Zitat Bhattacharya, D., Jha, N.K.: FinFETs: from devices to architectures. Adv. Electron. 2014, 1–21 (2014)CrossRef Bhattacharya, D., Jha, N.K.: FinFETs: from devices to architectures. Adv. Electron. 2014, 1–21 (2014)CrossRef
14.
Zurück zum Zitat Mehrad, M., Orouji, A.A.: Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans. Device Mater. Reliab. 10(2), 271–275 (2010)CrossRef Mehrad, M., Orouji, A.A.: Partially cylindrical fin field-effect transistor: a novel device for nanoscale applications. IEEE Trans. Device Mater. Reliab. 10(2), 271–275 (2010)CrossRef
15.
Zurück zum Zitat Hong, Y., Guo, Y., Yang, H., Yao, J., Zhang, Ji, J.X.: A novel Bulk-FinFET with dual-material gate. In: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3 (2014) Hong, Y., Guo, Y., Yang, H., Yao, J., Zhang, Ji, J.X.: A novel Bulk-FinFET with dual-material gate. In: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1–3 (2014)
16.
Zurück zum Zitat Pei, G., Kedzierski, J., Oldiges, P., Ieong, M., Kan, E.C.-C.: FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron. Devices 49(8), 1411–1419 (2002)CrossRef Pei, G., Kedzierski, J., Oldiges, P., Ieong, M., Kan, E.C.-C.: FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans. Electron. Devices 49(8), 1411–1419 (2002)CrossRef
17.
Zurück zum Zitat Yang, W., Yu, Z., Tian, L.: Scaling theory for FinFETs based on3-D effects investigation. IEEE Trans. Electron. Devices 54(5), 1140–1147 (2007)CrossRef Yang, W., Yu, Z., Tian, L.: Scaling theory for FinFETs based on3-D effects investigation. IEEE Trans. Electron. Devices 54(5), 1140–1147 (2007)CrossRef
18.
Zurück zum Zitat Ritzenthaler, R., Lime, F., Faynot, O., Cristoloveanu, S., Iñiguez, B.: 3D analytical modelling of subthreshold characteristics in vertical multiple gate FinFET transistors. Solid State Electron. 65, 94–102 (2011)CrossRef Ritzenthaler, R., Lime, F., Faynot, O., Cristoloveanu, S., Iñiguez, B.: 3D analytical modelling of subthreshold characteristics in vertical multiple gate FinFET transistors. Solid State Electron. 65, 94–102 (2011)CrossRef
19.
Zurück zum Zitat Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Semianalytical modeling of short-channel effects in lightly doped silicon trigate MOSFETs. IEEE Trans. Electron. Devices 55(10), 2623–2631 (2008)CrossRef Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Semianalytical modeling of short-channel effects in lightly doped silicon trigate MOSFETs. IEEE Trans. Electron. Devices 55(10), 2623–2631 (2008)CrossRef
20.
Zurück zum Zitat Rios, R., et al.: Comparison of junctionless and conventional trigate transistors with down to 26 nm. IEEE Electron. Device Lett. 32(9), 1170–1172 (2011)CrossRef Rios, R., et al.: Comparison of junctionless and conventional trigate transistors with down to 26 nm. IEEE Electron. Device Lett. 32(9), 1170–1172 (2011)CrossRef
21.
Zurück zum Zitat Sentaurus Device User Guide. Synopsys, Inc. (2011) Sentaurus Device User Guide. Synopsys, Inc. (2011)
22.
Zurück zum Zitat McKelvey, J.P.: Solid State and Semiconductor Phyisics. Harper and Row publisher, New york (1996) McKelvey, J.P.: Solid State and Semiconductor Phyisics. Harper and Row publisher, New york (1996)
23.
Zurück zum Zitat Tripathi, S., Narendar, V.: A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015)CrossRef Tripathi, S., Narendar, V.: A three-dimensional (3D) analytical model for subthreshold characteristics of uniformly doped FinFET. Superlattices Microstruct. 83, 476–487 (2015)CrossRef
24.
Zurück zum Zitat Nawaz, S.M., Dutta, S., Chattopadhyay, A., Mallik, A.: Comparison of random dopant and gate-metal workfunction variability between junctionless and conventional FinFETs. IEEE Electron. Device Lett. 35(6), 663–665 (2014)CrossRef Nawaz, S.M., Dutta, S., Chattopadhyay, A., Mallik, A.: Comparison of random dopant and gate-metal workfunction variability between junctionless and conventional FinFETs. IEEE Electron. Device Lett. 35(6), 663–665 (2014)CrossRef
25.
Zurück zum Zitat Paul, B.C., Tu, R., Fujita, S., Okajima, M., Lee, T.H., Nishi, Y.: An analytical compact circuit model for nanowire FET. IEEE Trans. Electron. Devices 54(7), 1637–1644 (2007)CrossRef Paul, B.C., Tu, R., Fujita, S., Okajima, M., Lee, T.H., Nishi, Y.: An analytical compact circuit model for nanowire FET. IEEE Trans. Electron. Devices 54(7), 1637–1644 (2007)CrossRef
26.
Zurück zum Zitat Kumar, A., Kedzierski, J., Laux, S.E.: Quantum-based simulation analysis of scaling in ultrathin body device structures. IEEE Trans. Electron. Devices 52(4), 614–617 (2005)CrossRef Kumar, A., Kedzierski, J., Laux, S.E.: Quantum-based simulation analysis of scaling in ultrathin body device structures. IEEE Trans. Electron. Devices 52(4), 614–617 (2005)CrossRef
27.
Zurück zum Zitat Colinge, J.P., Alderman, J.C., Xiong, W., Cleavelin, C.R.: Quantum-mechanical effects in trigate SOI MOSFETs. IEEE Trans. Electron. Devices 53(5), 1131–1136 (2006)CrossRef Colinge, J.P., Alderman, J.C., Xiong, W., Cleavelin, C.R.: Quantum-mechanical effects in trigate SOI MOSFETs. IEEE Trans. Electron. Devices 53(5), 1131–1136 (2006)CrossRef
28.
Zurück zum Zitat Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Ghibaudo, G., Collaert, N., Pananakakis, G.: Analytical threshold voltage model for lightly doped short-channel tri-gate MOSFET. Solid State Electron. 57, 31–34 (2011) Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Ghibaudo, G., Collaert, N., Pananakakis, G.: Analytical threshold voltage model for lightly doped short-channel tri-gate MOSFET. Solid State Electron. 57, 31–34 (2011)
29.
Zurück zum Zitat Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron. Devices 36, 399–402 (1989)CrossRef Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron. Devices 36, 399–402 (1989)CrossRef
30.
Zurück zum Zitat Hamid, H.A.E., Guitart, J.R., Iniguez, B.: Two dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron. Devices 54, 1402–1408 (2007)CrossRef Hamid, H.A.E., Guitart, J.R., Iniguez, B.: Two dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs. IEEE Trans. Electron. Devices 54, 1402–1408 (2007)CrossRef
31.
Zurück zum Zitat Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron. Devices 55(9), 2512–2516 (2008)CrossRef Tsormpatzoglou, A., Dimitriadis, C.A., Clerc, R., Pananakakis, G., Ghibaudo, G.: Threshold voltage model for short-channel undoped symmetrical double-gate MOSFETs. IEEE Trans. Electron. Devices 55(9), 2512–2516 (2008)CrossRef
32.
Zurück zum Zitat Fasarakis, N., Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Papathanasiou, K., Jomaah, J., Ghibaudo, G.: Analytical unified threshold voltage model of short-channel FinFETs and implementation. Solid State Electron. 64, 34–41 (2011)CrossRef Fasarakis, N., Tsormpatzoglou, A., Tassis, D.H., Dimitriadis, C.A., Papathanasiou, K., Jomaah, J., Ghibaudo, G.: Analytical unified threshold voltage model of short-channel FinFETs and implementation. Solid State Electron. 64, 34–41 (2011)CrossRef
33.
Zurück zum Zitat Kumar, P.R., Mahapatra, S.: Analytical Modelling of quantum threshold voltage for triple gate MOSFET. Solid State Electron. 54, 1586–1591 (2010)CrossRef Kumar, P.R., Mahapatra, S.: Analytical Modelling of quantum threshold voltage for triple gate MOSFET. Solid State Electron. 54, 1586–1591 (2010)CrossRef
34.
Zurück zum Zitat Subramanian, V., et al.: Impact of fin width on digital and analog performances of n-FinFETs. Solid State Electron. 51, 551–559 (2007)CrossRef Subramanian, V., et al.: Impact of fin width on digital and analog performances of n-FinFETs. Solid State Electron. 51, 551–559 (2007)CrossRef
Metadaten
Titel
3D analytical modeling of surface potential, threshold voltage, and subthreshold swing in dual-material-gate (DMG) SOI FinFETs
verfasst von
Rajesh Saha
Srimanta Baishya
Brinda Bhowmick
Publikationsdatum
11.10.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2018
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1072-x

Weitere Artikel der Ausgabe 1/2018

Journal of Computational Electronics 1/2018 Zur Ausgabe

Neuer Inhalt