In the context of the initial imperfection criterion method, it is posited that the cylinder possesses a structurally minimal initial imperfection before loading (Fig.
1b), with these initial structural distortions being axisymmetric and resembling the mode of a Chinese lantern. The external force that causes the amplitudes of these imperfections to escalate toward infinity is termed the critical force. In this study, the initial defect of the cylinder is defined as a sinusoidal shape, represented by the following equation for its lateral surface [
31,
32].
$$\begin{aligned} & r = f(t_3) = R + L \sin \,(\alpha t_3), \; \alpha = \pi /\ell , \nonumber \\ & a=R+\frac{h}{2}, b=R-\frac{h}{2}, h=\text {const}, \end{aligned}$$
(2)
where
\(t_3 \in (0,\ell )\) is a parameter and
L denotes the amplitude of the initial imperfection. It is assumed that
\(L \ll \ell \). The dimensionless tiny parameter
\(\varepsilon \) is introduced to quantify the extent of the initial imperfection [
31,
32].
$$\begin{aligned} \varepsilon = L/\ell , \; 0 < \varepsilon \ll 1/\pi . \end{aligned}$$
(3)
We consider the cross-section of the cylinders perpendicular to their middle line tangent vector to be a circle with constant radius. Given the assumptions, we examine the evolution of the infinitesimal initial imperfections of the cylinder under the influence of normal compression forces of intensity
p acting on its ends along the
z-axis. According to the considered problem symmetry, this study is conducted in the framework of the axisymmetrical state so solution domain can be selected as for solid cylinder
\(\{-a \le r \le 0\) and
\(0 \le z \le \ell \}\) or for hollow cylinder
\(\{-a \le r \le -b\) and
\(0 \le z \le \ell \}\) and it is assumed that the subsequent set of geometrically nonlinear 3D exact field equations of Elasticity Theory is provided in the solution domains:
$$\begin{aligned} \frac{\partial t_{rr}}{\partial r} + \frac{\partial t_{zr}}{\partial z} + \frac{1}{r}(t_{rr}-t_{\theta \theta })=0, ~ \frac{\partial t_{rz}}{\partial r} + \frac{1}{r}t_{rz} + \frac{\partial t_{zz}}{\partial z} = 0. \end{aligned}$$
(4)
where
$$\begin{aligned} & t_{rr}(r,z)=\sigma _{rr}\Big (1+\frac{\partial u_r}{\partial r}\Big ) + \sigma _{rz}\frac{\partial u_r}{\partial z}; t_{\theta \theta }(r,z) = \sigma _{\theta \theta }\Big (1+\frac{u_r}{ r}\Big ), \nonumber \\ & t_{zz}(r,z)=\sigma _{zr}\frac{\partial u_z}{\partial r} + \sigma _{zz}\Big (1+\frac{\partial u_z}{\partial z}\Big ); t_{rz}(r,z) = \sigma _{rr}\frac{\partial u_z}{\partial r} + \sigma _{rz}\Big (1+\frac{\partial u_z}{\partial z}\Big ), \nonumber \\ & t_{zr}(r,z)=\sigma _{zr}\Big (1+\frac{\partial u_r}{\partial r}\Big ) + \sigma _{zz}\frac{\partial u_r}{\partial z}. \end{aligned}$$
(5)
$$\begin{aligned} & \varepsilon _{rr}(r,z) = \frac{\partial u_r}{\partial r} + \frac{1}{2} \Bigg \{ \Big (\frac{\partial u_r}{\partial r}\Big )^2 + \Big (\frac{\partial u_z}{\partial r}\Big )^2 \Bigg \}, \varepsilon _{\theta \theta }(r,z) = \frac{u_r}{r} + \frac{1}{2} \Big (\frac{u_r}{r}\Big )^2, \nonumber \\ & \varepsilon _{zz}(r,z) = \frac{\partial u_z}{\partial z} + \frac{1}{2} \Bigg \{ \Big (\frac{\partial u_r}{\partial z}\Big )^2 + \Big (\frac{\partial u_z}{\partial z}\Big )^2 \Bigg \}, \nonumber \\ & \varepsilon _{rz}(r,z) = \frac{1}{2} \Big (\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \Big ) + \frac{1}{2} \Big \{\frac{\partial u_r}{\partial r} \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \frac{\partial u_z}{\partial z} \Big \}. \end{aligned}$$
(6)
The variables
\(t_{rr},~t_{\theta \theta },~t_{zz},~t_{zr}\) and
\(t_{rz}\) are components of the non-symmetric Kirchhoff stress tensor, whereas
\(\sigma _{rr},~\sigma _{\theta \theta },~\sigma _{zz},~\sigma _{zr}\) and
\(\sigma _{rz}\) \((\varepsilon _{rr},~\varepsilon _{\theta \theta },~\varepsilon _{zz},~\varepsilon _{zr}\) and
\(\varepsilon _{rz})\) denote the components of the Green stress (strain) tensor. Additionally,
\(u_r\) and
\(u_z\) signify the displacement vector components in the
r and
z directions, respectively. The Eq. (
4) represents the governing equation concerning the non-symmetric Kirchhoff stress tensor components. Equation (
5) delineates the relationship between the components of the non-symmetric Kirchhoff stress tensor and the components of the conventional stress tensor within a cylindrical coordinate system. Furthermore, Eq. (
6) exemplifies the nonlinear relationship between the components of the Green strain tensor and the components of the displacement vector.
The constitutive equations for the material of the cylinder in the cylindrical coordinate system are as follows:
$$\begin{aligned} & \sigma _{rr} = C_{11}\varepsilon _{rr} + C_{12}\varepsilon _{\theta \theta } + C_{13}\varepsilon _{zz}, \nonumber \\ & \sigma _{\theta \theta } = C_{12}\varepsilon _{rr} + C_{11}\varepsilon _{\theta \theta } + C_{13}\varepsilon _{zz}, \nonumber \\ & \sigma _{zz} = C_{13}\varepsilon _{rr} + C_{13}\varepsilon _{\theta \theta } + C_{33}\varepsilon _{zz}, \nonumber \\ & \sigma _{rz} = 2C_{66}\varepsilon _{rz}. \end{aligned}$$
(7)
where
\(C_{ij}~~(ij=11,12,13,33,66)\) denotes the function that characterizes the material qualities and is contingent upon location. The relations in (
7) pertain to a cylinder composed of transversely isotropic material, with its symmetry axis aligned along the
Oz axis. In the case where the material of the cylinder is isotropic FGM, the material constants
\(C_{ij}\) (in (
7)) are expressed as follows:
$$\begin{aligned} & C_{11} =C_{33}= \frac{(1-\nu ) E(z)}{(1+\nu )(1-2\nu )}, ~ C_{12}=C_{13}=\frac{\nu E(z)}{(1+\nu )(1-2\nu )}, \nonumber \\ & C_{66} = \frac{E(z)}{2(1+\nu )}. \end{aligned}$$
(8)
E(
z) represents the modulus of elasticity and
\(\nu \) denotes the Poisson’s ratio. The boundary conditions for the problem are given as follows:
$$\begin{aligned} & (t_{rr} n_r + t_{zr}n_z)\Big |_{r=R\pm {h/2}}=0, \nonumber \\ & (t_{zr} n_r + t_{zz}n_z)\Big |_{r=R\pm {h/2}}=0, \nonumber \\ & t_{zz}\Big |_{z=0;\ell }=-p, ~ u_r\Big |_{z=0;\ell }=u_z\Big |_{z=0;\ell }=0. \end{aligned}$$
(9)
In this context,
p denotes the intensity of the normal pressure applied to the ends of the cylinder, whereas the term
\(n_r~(n_z)\) refers to the radial (vertical) component of the unit outer normal of the specified surface. To address the boundary value problem (
4)–(
9), we express the desired values as a power series in relation to the tiny parameter
\(\varepsilon \) as indicated in Eq. (
3) [
31].
$$\begin{aligned} \Big \{\sigma _{(ij)}, \varepsilon _{(ij)}, u_{(i)}\Big \} = \Sigma _{q=0}^\infty \varepsilon ^q \Big [\sigma _{(ij)}^{(q)}, \varepsilon _{(ij)}^{(q)}, u_{(i)}^{(q)} \Big ]. \end{aligned}$$
(10)
where
\((ij)=rr,\theta \theta ,zz,rz\) and
\((i)=r,z\). By substituting the expression (
10) into the relations (
4) to (
9) and organizing them according to the degree of the parameter
\(\varepsilon \), we obtain a series-boundary value problem. Each problem is arranged based on the degree of the parameter
\(\varepsilon \) and according to the degree of
\(\varepsilon \), labeling them as zeroth
\((\varepsilon ^0)\), first
\((\varepsilon ^1)\) and subsequent approximations.
Each approximation incorporates elements from all preceding approximations. The zeroth and the first approximations are adequate to ascertain the critical force for the current problem, as outlined in [
31,
32]. Consequently, the equations, relationships, and boundary conditions for the zeroth approximation are delineated below:
$$\begin{aligned} & \frac{\partial \sigma _{rr}^{(0)}}{\partial r} + \frac{\partial \sigma _{rz}^{(0)}}{\partial z} + \frac{1}{r}(\sigma _{rr}^{(0)}-\sigma _{\theta \theta }^{(0)})=0, \nonumber \\ & \frac{\partial \sigma _{rz}^{(0)}}{\partial r} + \frac{1}{r}\sigma _{rz}^{(0)} + \frac{\partial \sigma _{zz}^{(0)}}{\partial z} = 0, \end{aligned}$$
(11)
$$\begin{aligned} & \sigma _{rr}^{(0)} = C_{11}\varepsilon _{rr}^{(0)} + C_{12}\varepsilon _{\theta \theta }^{(0)} + C_{13}\varepsilon _{zz}^{(0)}, \nonumber \\ & \sigma _{\theta \theta }^{(0)} = C_{12}\varepsilon _{rr}^{(0)} + C_{11}\varepsilon _{\theta \theta }^{(0)} + C_{13}\varepsilon _{zz}^{(0)}, \nonumber \\ & \sigma _{zz}^{(0)} = C_{13}\varepsilon _{rr}^{(0)} + C_{13}\varepsilon _{\theta \theta }^{(0)} + C_{33}\varepsilon _{zz}^{(0)}, \nonumber \\ & \sigma _{rz}^{(0)} = 2C_{66}\varepsilon _{rz}^{(0)}. \end{aligned}$$
(12)
$$\begin{aligned} & \varepsilon _{rr}^{(0)} = \frac{\partial u_r^{(0)}}{\partial r}, \varepsilon _{\theta \theta }^{(0)} = \frac{u_r^{(0)}}{r}, \nonumber \\ & \varepsilon _{zz}^{(0)} = \frac{\partial u_z^{(0)}}{\partial z}, \varepsilon _{rz}^{(0)} = \frac{1}{2} \Big (\frac{\partial u_r^{(0)}}{\partial z} + \frac{\partial u_z^{(0)}}{\partial r} \Big ). \end{aligned}$$
(13)
$$\begin{aligned} & \sigma _{rr}^{(0)}\Big |_{r=R\pm {h/2}}=0, \sigma _{rz}^{(0)}\Big |_{r=R\pm {h/2}}=0, \nonumber \\ & \sigma _{zz}^{(0)}\Big |_{z=0,\ell }=-p, u_{r}^{(0)}\Big |_{z=0,\ell }=u_{z}^{(0)}\Big |_{z=0,\ell }=0. \end{aligned}$$
(14)
The values pertaining to the zeroth approximation are ascertained as follows according to (
11)–(
14):
$$\begin{aligned} \sigma _{zz}^{(0)} = -p, \sigma _{ij}^{(0)} = 0, (ij) \ne zz. \end{aligned}$$
(15)
From (
15), it can be inferred that in the zeroth approximation, the components of the displacement vector can be expressed as follows [
32]:
$$\begin{aligned} u_z^{(0)} = A_1 r + A_2, u_z{(0)} = B_1 r + B_2. \end{aligned}$$
(16)
where
\(A_i\) and
\(B_i\) are constant coefficients whose values are determined from the zeroth approximation (i.e., from the boundary value problem in (
11)–(
14). Now we ascertain the values pertaining to the first approximation. Considering the expression (
15), the equations, relationships, and boundary conditions for the first approximation are enumerated below:
$$\begin{aligned} & \frac{\partial \sigma _{rr}^{(1)}}{\partial r} + \frac{\partial \sigma _{rz}^{(1)}}{\partial z} + \frac{1}{r}(\sigma _{rr}^{(1)}-\sigma _{\theta \theta }^{(1)}) + \sigma _{zz}^{(0)} \frac{\partial ^2 u_r^{(1)}}{\partial z^2}=0, \nonumber \\ & \frac{\partial \sigma _{rz}^{(1)}}{\partial r} + \frac{1}{r}\sigma _{rz}^{(1)} + \frac{\partial \sigma _{zz}^{(1)}}{\partial z} + \sigma _{zz}^{(0)} \frac{\partial ^2 u_z^{(1)}}{\partial z^2} = 0, \end{aligned}$$
(17)
$$\begin{aligned} & \sigma _{rr}^{(1)} = C_{11}\varepsilon _{rr}^{(1)} + C_{12}\varepsilon _{\theta \theta }^{(1)} + C_{13}\varepsilon _{zz}^{(1)}, \nonumber \\ & \sigma _{\theta \theta }^{(1)} = C_{12}\varepsilon _{rr}^{(1)} + C_{11}\varepsilon _{\theta \theta }^{(1)} + C_{13}\varepsilon _{zz}^{(1)}, \nonumber \\ & \sigma _{zz}^{(1)} = C_{13}\varepsilon _{rr}^{(1)} + C_{13}\varepsilon _{\theta \theta }^{(1)} + C_{33}\varepsilon _{zz}^{(1)}, \nonumber \\ & \sigma _{rz}^{(1)} = 2C_{66}\varepsilon _{rz}^{(1)}. \end{aligned}$$
(18)
$$\begin{aligned} & \varepsilon _{rr}^{(1)} = \frac{\partial u_r^{(1)}}{\partial r}, \varepsilon _{\theta \theta }^{(1)} = \frac{u_r^{(1)}}{r}, \nonumber \\ & \varepsilon _{zz}^{(1)} = \frac{\partial u_z^{(1)}}{\partial z}, \varepsilon _{rz}^{(1)} = \frac{1}{2} \Big (\frac{\partial u_r^{(1)}}{\partial z} + \frac{\partial u_z^{(1)}}{\partial r} \Big ). \end{aligned}$$
(19)
$$\begin{aligned} & \sigma _{rr}^{(1)}\Big |_{r=R\pm {h/2}}=0, \sigma _{rz}^{(1)}\Big |_{r=R\pm {h/2}}=\sigma _{zz}^{(0)}\frac{\pi }{\ell } \cos \Big (\frac{\pi z}{\ell }\Big ), \nonumber \\ & \Big (\sigma _{zz}^{(1)}+\sigma _{zz}^{(0)}\frac{\partial u_z^{(1)}}{\partial z}\Big )\Big |_{z=0,\ell }=0, u_{r}^{(1)}\Big |_{z=0,\ell }=u_{z}^{(1)}\Big |_{z=0,\ell }=0. \end{aligned}$$
(20)
In Eqs. (
11)–(
20), previously defined known quantities are used. The zeroth approximation’s solution is determined analytically. On the other hand, the finite element approach is used to determine the numerical solution to the boundary value problem of the first approximation. To this end, in accordance with [
33], we present the subsequent functional:
$$\begin{aligned} & J[u_r^{(1)},u_z^{(1)}] = \frac{1}{2} \int \limits _0^\ell \int \limits _0^R \Bigg \{ t_{rr}^{(1)} \frac{\partial u_r^{(1)}}{\partial r} + t_{\theta \theta }^{(1)} \frac{u_r^{(1)}}{r} + t_{zz}^{(1)} \frac{\partial u_z^{(1)}}{\partial z} + \nonumber \\ & t_{rz}^{(1)} \frac{\partial u_z^{(1)}}{\partial r} + t_{zr}^{(1)} \frac{\partial u_r^{(1)}}{\partial z} \Bigg \} r \text {d}r\text {d}z - \int \limits _0^\ell \frac{\text {d}f}{\text {d}z} \sigma _{zz}^{(0)} u_z^{(1)}\Big |_{r=R} \text {d}z. \end{aligned}$$
(21)
where
$$\begin{aligned} & t_{rr}^{(1)} = \sigma _{rr}^{(1)} + \sigma _{rr}^{(0)}\frac{\partial u_r^{(1)}}{\partial r} + \sigma _{rz}^{(0)}\frac{\partial u_r^{(1)}}{\partial z}, t_{\theta \theta }^{(1)} = \sigma _{\theta \theta }^{(1)} + \sigma _{\theta \theta }^{(0)}\frac{u_r^{(1)}}{r}, \nonumber \\ & t_{zz}^{(1)} = \sigma _{zz}^{(1)} + \sigma _{zr}^{(0)}\frac{\partial u_z^{(1)}}{\partial r} + \sigma _{zz}^{(0)}\frac{\partial u_z^{(1)}}{\partial z}, \nonumber \\ & t_{rz}^{(1)} = \sigma _{rz}^{(1)} + \sigma _{rr}^{(0)}\frac{\partial u_z^{(1)}}{\partial r} + \sigma _{rz}^{(0)}\frac{\partial u_z^{(1)}}{\partial z}, \nonumber \\ & t_{zr}^{(1)} = \sigma _{zr}^{(1)} + \sigma _{zr}^{(0)}\frac{\partial u_r^{(1)}}{\partial r} + \sigma _{zz}^{(0)}\frac{\partial u_r^{(1)}}{\partial z}. \end{aligned}$$
(22)
The quantities in the first (zeroth) approximation are denoted by the upper indices (1) ((0)) in Eqs. (
21) and (
22). It is observed that in the specified load case, only the value of
\(\sigma _{zz}^{(0)}\) is non-zero, while the other stress quantities with upper indices (0), namely
\(\sigma _{rr}^{(0)}\),
\(\sigma _{zr}^{(0)}\) and
\(\sigma _{rz}^{(0)}\) are equal to zero. Prior to establishing the FEM modeling, it is essential to clarify that functional (
21) corresponds to the boundary value problem (
17)–(
20). By taking the variation of the functional (
21) with respect to the displacements
\(u_r^{(1)}\) and
\(u_z^{(1)}\) and equating it to zero, one can derive the two differential equations presented in (
17) as well as the boundary conditions corresponding to the stresses outlined in (
20) as follows:
$$\begin{aligned} & \delta J[u_r^{(1)},u_z^{(1)}]=0. \end{aligned}$$
(23)
$$\begin{aligned} & \frac{1}{2} \int \limits _0^\ell \int \limits _0^R \delta \Bigg \{ r \sigma _{rr}^{(1)} \frac{\partial u_r^{(1)}}{\partial r} + \sigma _{\theta \theta }^{(1)} u_r^{(1)} + r\Big (\sigma _{zz}^{(1)}+ \sigma _{zz}^{(0)}\frac{\partial u_z^{(1)}}{\partial z}\Big ) \frac{\partial u_z^{(1)}}{\partial z} + \nonumber \\ & r \sigma _{rz}^{(1)} \frac{\partial u_z^{(1)}}{\partial r} + r\Big (\sigma _{rz}^{(1)}+\sigma _{zz}^{(0)} \frac{\partial u_r^{(1)}}{\partial z}\Big ) \frac{\partial u_r^{(1)}}{\partial z} \Bigg \} \text {d}r\text {d}z - \nonumber \\ & \int \limits _0^\ell \frac{\text {d}f}{\text {d}z} \sigma _{zz}^{(0)} \delta u_z^{(1)}\Big |_{r=R} \text {d}z =0. \end{aligned}$$
(24)
$$\begin{aligned} & \delta \sigma _{rr}^{(1)} = C_{11} \frac{\partial \delta u_r^{(1)}}{\partial r} + C_{12} \frac{\delta u_r^{(1)}}{r} + C_{13} \frac{\partial \delta u_z^{(1)}}{\partial z}, \nonumber \\ & \delta \sigma _{\theta \theta }^{(1)} = C_{12} \frac{\partial \delta u_r^{(1)}}{\partial r} + C_{11} \frac{\delta u_r^{(1)}}{r} + C_{13} \frac{\partial \delta u_z^{(1)}}{\partial z}, \nonumber \\ & \delta \sigma _{zz}^{(1)} = C_{13} \frac{\partial \delta u_r^{(1)}}{\partial r} + C_{13} \frac{\delta u_r^{(1)}}{r} + C_{33} \frac{\partial \delta u_z^{(1)}}{\partial z}, \nonumber \\ & \delta \sigma _{rz}^{(1)} = C_{66} \Big (\frac{\partial \delta u_r^{(1)}}{\partial z} + \frac{\partial \delta u_z^{(1)}}{\partial r} \Big ), \delta \varepsilon _{rr}^{(1)} = \frac{\partial \delta u_r^{(1)}}{\partial r}, \nonumber \\ & \delta \varepsilon _{\theta \theta }^{(1)} = \frac{\delta u_r^{(1)}}{r}, \delta \varepsilon _{zz}^{(1)} = \frac{\partial \delta u_z^{(1)}}{\partial z}, \delta \varepsilon _{rz}^{(1)} = \frac{1}{2} \Big ( \frac{\partial \delta u_r^{(1)}}{\partial z} + \frac{\partial \delta u_z^{(1)}}{\partial r} \Big ), \end{aligned}$$
(25)
The variations in the quantities of (
25) are treated as in (
24), and after numerous mathematical manipulations and grouping for
\(\delta u_r^{(1)}\) and
\(\delta u_z^{(1)}\), the subsequent equation is derived.
$$\begin{aligned} & - \int \limits _0^\ell \int \limits _0^R \Bigg \{\ \Bigg [ \frac{\partial \sigma _{rr}^{(1)}}{\partial r} + \frac{\partial \sigma _{rz}^{(1)}}{\partial z} + \frac{\sigma _{rr}^{(1)}-\sigma _{\theta \theta }^{(1)}}{r} + \sigma _{zz}^{(0)} \frac{\partial ^2 u_z^{(1)}}{\partial z^2} \Bigg ] \delta u_r^{(1)} \nonumber \\ & +\Bigg [ \frac{\partial \sigma _{rz}^{(1)}}{\partial r} + \frac{1}{r} \sigma _{rz}^{(1)} + \frac{\partial \sigma _{zz}^{(1)}}{\partial z} + \sigma _{zz}^{(0)} \frac{\partial ^2 u_z^{(1)}}{\partial z^2}\Bigg ]\delta u_z^{(1)}\Bigg \}r \text {d}r \text {d}z + \nonumber \\ & \int \limits _0^\ell r\sigma _{rr}^{(1)} \delta u_r^{(1)} \Big |_{r=0}^R dz + \int \limits _0^R \Bigg ( \sigma _{rz}^{(1)} + \sigma _{zz}^{(0)} \frac{\partial u_r^{(1)}}{\partial z}\Bigg ) \delta u_r^{(1)} \Big |_{z=0}^\ell r dr + \nonumber \\ & \int \limits _0^\ell r\sigma _{rz}^{(1)} \delta u_z^{(1)} \Big |_{r=0}^R dz + \int \limits _0^R \Bigg ( \sigma _{zz}^{(1)} + \sigma _{zz}^{(0)} \frac{\partial u_z^{(1)}}{\partial z}\Bigg ) \delta u_z^{(1)} \Big |_{z=0}^\ell r dr - \nonumber \\ & \int _0^\ell \frac{d f}{d z} \sigma _{zz}^{(0)} \delta u_z^{(1)} \Big |_{r=R}dz=0. \end{aligned}$$
(26)
It should be noted that in (
26), the boundary condition pertaining to
\(u_r^{(1)}\) and
\(u_z^{(1)}\) must be fulfilled by
\(\delta u_r^{(1)}\) and
\(\delta u_z^{(1)}\), specifically,
\(\delta u_r^{(1)}\Big |_{z=0}^{\ell }=0\) and
\(\delta u_z^{(1)}\Big |_{z=0}^{\ell }=0\). Each term in (
26) is equal to zero individually. Since
\(\delta u_r^{(1)}\) and
\(\delta u_z^{(1)}\) are arbitrary, their coefficients must be zero. Consequently, the governing equations in (
17) and the boundary conditions in (
20) are adopted, demonstrating that the functional (
21) is applicable for finite element method modeling of the boundary value problem (
17)–(
20). Consequently, by employing functional (
21) and the Ritz method, together with established FEM processes [
34], the FEM modeling is developed, resulting in the following system of linear algebraic equations.
$$\begin{aligned} K u^{(1)} = F. \end{aligned}$$
(27)
where
F is the load vector,
K is the Stiffness matrix, and
\(u^{(1)}\) is the nodal displacement vector.The element stiffness matrix
\(K^{(e)}\) is
$$\begin{aligned} K^{(e)}=\int \limits _{W_e} \Big (B^{(e)}\Big )^T C^{(e)} \Big (B^{(e)}\Big )dW_e,~~ e=1,2,.....,M. \end{aligned}$$
where
$$\begin{aligned} B^{(e)^T}= \begin{bmatrix} \frac{\partial N}{\partial x_1} & 0 & 0 & \frac{\partial N}{\partial x_2} & 0 & \frac{\partial N}{\partial x_3} \\ 0 & \frac{\partial N}{\partial x_2} & 0 & \frac{\partial N}{\partial x_1} & \frac{\partial N}{\partial x_3} & 0 \\ 0 & 0 & \frac{\partial N}{\partial x_3} & 0 & \frac{\partial N}{\partial x_2} & \frac{\partial N}{\partial x_1} \end{bmatrix}. \end{aligned}$$
and
\(W_e ~(W=\cup _{e=1}^{M} W_e)\) is the domain of e-th finite element,
T indicates the transpose,
M is the total number of finite elements,
N is the shape function, and
\(C^{(e)}\) is an Elasticity matrix whose constituents are
\(C_{ij}(z)\) in Eq. (
7). Nodal displacements are derived by resolving Eq. (
27). In each finite element, Gauss quadrature method with 10 sample points is employed to derive the numerical values of definite integrals. The solution domain
W is divided into nine-noded quadrilateral (Q9) elements [
34]. In summary, the solution technique outlined above involves solving the zeroth (Eqs.
11–
14) and first (Eqs.
17–
20) approximations for different values of
p in (
14), following which the critical parameter
\(p_{cr}\) is ascertained using the initial imperfection criterion, i.e.,
$$\begin{aligned} |u_r^{(1)}|_{r=R; z=\ell /2} \rightarrow \infty ~\text {as}~ p \rightarrow p_{cr}. \end{aligned}$$
(28)