Skip to main content
Erschienen in: Computational Mechanics 1-2/2018

13.06.2017 | Original Paper

3D ductile crack propagation within a polycrystalline microstructure using XFEM

verfasst von: Steffen Beese, Stefan Loehnert, Peter Wriggers

Erschienen in: Computational Mechanics | Ausgabe 1-2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201–204:91–111MathSciNetCrossRefMATH Babuška I, Banerjee U (2012) Stable generalized finite element method (SGFEM). Comput Methods Appl Mech Eng 201–204:91–111MathSciNetCrossRefMATH
3.
Zurück zum Zitat Barth TJ, Sethian JA (1998) Numerical schemes for the hamilton–jacobi and level set equations on triangulated domains. J Comput Phys 145(1):1–40MathSciNetCrossRefMATH Barth TJ, Sethian JA (1998) Numerical schemes for the hamilton–jacobi and level set equations on triangulated domains. J Comput Phys 145(1):1–40MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bažant Z, Pijaudier-Cabot G (1988) Nonlocal damage, localization instability and convergence. J Appl Mech 55:287–293CrossRefMATH Bažant Z, Pijaudier-Cabot G (1988) Nonlocal damage, localization instability and convergence. J Appl Mech 55:287–293CrossRefMATH
5.
Zurück zum Zitat Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64:1033–1056CrossRefMATH Béchet E, Minnebo H, Moës N, Burgardt B (2005) Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int J Numer Methods Eng 64:1033–1056CrossRefMATH
6.
Zurück zum Zitat Beese S, Loehnert S, Wriggers P (2016) Modeling of fracture in polycrystalline materials. In: Advances in discretization methods, Springer, pp 79–102 Beese S, Loehnert S, Wriggers P (2016) Modeling of fracture in polycrystalline materials. In: Advances in discretization methods, Springer, pp 79–102
7.
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620CrossRefMATH Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620CrossRefMATH
8.
Zurück zum Zitat Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013CrossRefMATH Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013CrossRefMATH
9.
Zurück zum Zitat Bertram A (1999) An alternative approach to finite plasticity based on material isomorphisms. Int J Plast 15(3):353–374CrossRefMATH Bertram A (1999) An alternative approach to finite plasticity based on material isomorphisms. Int J Plast 15(3):353–374CrossRefMATH
10.
Zurück zum Zitat Chopp DL, Sukumar N (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845–869MathSciNetCrossRefMATH Chopp DL, Sukumar N (2003) Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. Int J Eng Sci 41:845–869MathSciNetCrossRefMATH
11.
Zurück zum Zitat Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190:2227–2262CrossRefMATH Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput Methods Appl Mech Eng 190:2227–2262CrossRefMATH
13.
Zurück zum Zitat Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195:501–515CrossRefMATH Elguedj T, Gravouil A, Combescure A (2006) Appropriate extended functions for X-FEM simulation of plastic fracture mechanics. Comput Methods Appl Mech Eng 195:501–515CrossRefMATH
14.
Zurück zum Zitat Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525CrossRef Erdogan F, Sih G (1963) On the crack extension in plates under plane loading and transverse shear. J Basic Eng 85:519–525CrossRef
16.
Zurück zum Zitat Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227MathSciNetCrossRefMATH Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32:1205–1227MathSciNetCrossRefMATH
17.
18.
Zurück zum Zitat Fries TP, Baydoun M (2012) Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description. Int J Numer Methods Eng 89:1527–1558MathSciNetCrossRefMATH Fries TP, Baydoun M (2012) Crack propagation with the extended finite element method and a hybrid explicit–implicit crack description. Int J Numer Methods Eng 89:1527–1558MathSciNetCrossRefMATH
19.
Zurück zum Zitat Garzon J, O’Hara P, Duarte CA, Buttlar WG (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273CrossRefMATH Garzon J, O’Hara P, Duarte CA, Buttlar WG (2014) Improvements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescence. Int J Numer Methods Eng 97(4):231–273CrossRefMATH
20.
Zurück zum Zitat Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part II: level set update. Int J Numer Methods Eng 53:2569–2586CrossRefMATH Gravouil A, Moës N, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part II: level set update. Int J Numer Methods Eng 53:2569–2586CrossRefMATH
21.
Zurück zum Zitat Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRef Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRef
22.
Zurück zum Zitat Gupta P, Duarte CA (2014) Simulation of non-planar three-dimensional hydraulic fracture propagation. Int J Numer Anal Methods Geomech 38(13):1397–1430CrossRef Gupta P, Duarte CA (2014) Simulation of non-planar three-dimensional hydraulic fracture propagation. Int J Numer Anal Methods Geomech 38(13):1397–1430CrossRef
23.
Zurück zum Zitat Gupta V, Duarte CA, Babuška I, Banerjee U (2013) A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng 266:23–39MathSciNetCrossRefMATH Gupta V, Duarte CA, Babuška I, Banerjee U (2013) A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics. Comput Methods Appl Mech Eng 266:23–39MathSciNetCrossRefMATH
24.
Zurück zum Zitat Helm D (2006) Stress computation in finite thermoviscoplasticity. Int J Plast 22(9):1699–1727CrossRefMATH Helm D (2006) Stress computation in finite thermoviscoplasticity. Int J Plast 22(9):1699–1727CrossRefMATH
25.
Zurück zum Zitat Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3D multiscale crack propagation using the XFEM applied to a gas turbine blade. Comput Mech 53(1):173–188MathSciNetCrossRefMATH Holl M, Rogge T, Loehnert S, Wriggers P, Rolfes R (2014) 3D multiscale crack propagation using the XFEM applied to a gas turbine blade. Comput Mech 53(1):173–188MathSciNetCrossRefMATH
26.
Zurück zum Zitat Hughes TJ, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189MathSciNetCrossRefMATH Hughes TJ, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective–diffusive equations. Comput Methods Appl Mech Eng 73(2):173–189MathSciNetCrossRefMATH
27.
Zurück zum Zitat Kachanov L (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31 Kachanov L (1958) Time of the rupture process under creep conditions. Isv Akad Nauk SSR Otd Tekh Nauk 8:26–31
28.
Zurück zum Zitat Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64:354–381CrossRefMATH Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64:354–381CrossRefMATH
29.
Zurück zum Zitat Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the extended finite element method. Int J Numer Methods Eng 63:290–314MathSciNetCrossRefMATH Legrain G, Moës N, Verron E (2005) Stress analysis around crack tips in finite strain problems using the extended finite element method. Int J Numer Methods Eng 63:290–314MathSciNetCrossRefMATH
30.
Zurück zum Zitat Loehnert S (2014) A stabilization technique for the regularization of nearly singular extended finite elements. Comput Mech 54:523–533MathSciNetCrossRefMATH Loehnert S (2014) A stabilization technique for the regularization of nearly singular extended finite elements. Comput Mech 54:523–533MathSciNetCrossRefMATH
31.
Zurück zum Zitat Loehnert S, Mueller-Hoeppe DS, Wriggers P (2011) 3D corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng 86:431–452MathSciNetCrossRefMATH Loehnert S, Mueller-Hoeppe DS, Wriggers P (2011) 3D corrected XFEM approach and extension to finite deformation theory. Int J Numer Methods Eng 86:431–452MathSciNetCrossRefMATH
32.
Zurück zum Zitat Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33:3327–3342CrossRefMATH Mazars J, Pijaudier-Cabot G (1996) From damage to fracture mechanics and conversely: a combined approach. Int J Solids Struct 33:3327–3342CrossRefMATH
33.
Zurück zum Zitat Menk A, Bordas SPA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85:1609–1632MathSciNetCrossRefMATH Menk A, Bordas SPA (2011) A robust preconditioning technique for the extended finite element method. Int J Numer Methods Eng 85:1609–1632MathSciNetCrossRefMATH
34.
Zurück zum Zitat Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833CrossRef Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69:813–833CrossRef
35.
Zurück zum Zitat Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150CrossRefMATH
36.
Zurück zum Zitat Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model. Int J Numer Methods Eng 53:2549–2568CrossRefMATH Moës N, Gravouil A, Belytschko T (2002) Non-planar 3D crack growth by the extended finite element and level sets—part I: mechanical model. Int J Numer Methods Eng 53:2549–2568CrossRefMATH
37.
Zurück zum Zitat Oliver J, Huespe AE (2004) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193:3195–3220MathSciNetCrossRefMATH Oliver J, Huespe AE (2004) Continuum approach to material failure in strong discontinuity settings. Comput Methods Appl Mech Eng 193:3195–3220MathSciNetCrossRefMATH
38.
Zurück zum Zitat Peerlings R, de Borst R, Brekelmans W, de Vree J (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATH Peerlings R, de Borst R, Brekelmans W, de Vree J (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39:3391–3403CrossRefMATH
39.
Zurück zum Zitat Pereira JP, Duarte CA, Guoy D, Jiao X (2009) hp-generalized fem and crack surface representation for non-planar 3-d cracks. Int J Numer Methods Eng 77(5):601–633MathSciNetCrossRefMATH Pereira JP, Duarte CA, Guoy D, Jiao X (2009) hp-generalized fem and crack surface representation for non-planar 3-d cracks. Int J Numer Methods Eng 77(5):601–633MathSciNetCrossRefMATH
40.
Zurück zum Zitat Perić D, Vaz M, Owen D (1999) On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Comput Methods Appl Mech Eng 176(1):279–312MATH Perić D, Vaz M, Owen D (1999) On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Comput Methods Appl Mech Eng 176(1):279–312MATH
41.
Zurück zum Zitat Pietruszczak S, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Methods Eng 17(3):327–334CrossRefMATH Pietruszczak S, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Methods Eng 17(3):327–334CrossRefMATH
42.
Zurück zum Zitat Ramasubramaniam A, Ariza M, Ortiz M (2007) A discrete mechanics approach to dislocation dynamics in bcc crystals. J Mech Phys Solids 55(3):615–647MathSciNetCrossRefMATH Ramasubramaniam A, Ariza M, Ortiz M (2007) A discrete mechanics approach to dislocation dynamics in bcc crystals. J Mech Phys Solids 55(3):615–647MathSciNetCrossRefMATH
44.
45.
Zurück zum Zitat Sethian JA, Vladimirsky A (2000) Fast methods for the eikonal and related hamilton–jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703MathSciNetCrossRefMATH Sethian JA, Vladimirsky A (2000) Fast methods for the eikonal and related hamilton–jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703MathSciNetCrossRefMATH
46.
Zurück zum Zitat Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173CrossRefMATH Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173CrossRefMATH
47.
Zurück zum Zitat Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129(3):235–254CrossRefMATH Steinmann P, Stein E (1996) On the numerical treatment and analysis of finite deformation ductile single crystal plasticity. Comput Methods Appl Mech Eng 129(3):235–254CrossRefMATH
48.
Zurück zum Zitat Stolarska M, Chopp LD, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960CrossRefMATH Stolarska M, Chopp LD, Moës N, Belytschko T (2001) Modelling crack growth by level sets in the extended finite element method. Int J Numer Methods Eng 51:943–960CrossRefMATH
49.
Zurück zum Zitat Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69MathSciNetCrossRefMATH Strouboulis T, Babuška I, Copps K (2000) The design and analysis of the generalized finite element method. Comput Methods Appl Mech Eng 181:43–69MathSciNetCrossRefMATH
50.
Zurück zum Zitat Sukumar N, Chopp DL, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatique crack propagation. Eng Fract Mech 70:29–48CrossRef Sukumar N, Chopp DL, Moran B (2003) Extended finite element method and fast marching method for three-dimensional fatique crack propagation. Eng Fract Mech 70:29–48CrossRef
51.
Zurück zum Zitat Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48:1549–1570CrossRefMATH Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48:1549–1570CrossRefMATH
52.
Zurück zum Zitat Svendsen B (1998) A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int J Plast 14(6):473–488CrossRefMATH Svendsen B (1998) A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int J Plast 14(6):473–488CrossRefMATH
Metadaten
Titel
3D ductile crack propagation within a polycrystalline microstructure using XFEM
verfasst von
Steffen Beese
Stefan Loehnert
Peter Wriggers
Publikationsdatum
13.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1-2/2018
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1427-y

Weitere Artikel der Ausgabe 1-2/2018

Computational Mechanics 1-2/2018 Zur Ausgabe

EditorialNotes

Foreword

Neuer Inhalt