Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 4/2022

25.02.2022

3D Face Recognition Using a Fusion of PCA and ICA Convolution Descriptors

verfasst von: Koushik Dutta, Debotosh Bhattacharjee, Mita Nasipuri, Ondrej Krejcar

Erschienen in: Neural Processing Letters | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper introduces a hybrid filter bank-based convolutional network to develop a 3D face recognition system in different orientations. The filter banks approach has been mainly used for feature representation. The hybridization in filter banks is primarily generated by a fusion of principal component analysis (PCA) and independent component analysis (ICA) filters. Currently, the deep convolutional neural network (DCNN) has taken a significant step for improving the classification compared to other learning, though the feature learning mechanism of DCNN is not definite. We have used the cascaded linear convolutional network for 3D face classification using a composite filter-based network named PICANet. The networks consist of different layers: convolutional layer, nonlinear processing layer, pooling layer, and classification layer. The main advantage of these networks over DCNN is that the network structure is simple and computationally efficient. We have tested the proposed system on three accessible 3D face databases: Frav3D, GavabDB, and Casia3D. Considering different faces in Frav3D, GavabDB, and Casia3D, the system acquired 96.93%, 87.7%, and 89.21% recognition rates using the proposed hybrid network.
Literatur
1.
Zurück zum Zitat Abate AF, Nappi M, Riccio D, Sabatino G (2007) 2D and 3D face recognition: a survey. Pattern Recogn Lett 28(14):1885–1906 CrossRef Abate AF, Nappi M, Riccio D, Sabatino G (2007) 2D and 3D face recognition: a survey. Pattern Recogn Lett 28(14):1885–1906 CrossRef
2.
Zurück zum Zitat Aloysius N, Geetha M (2017) A review on Deep Convolutional neural networks, International Conference on Communication and Signal Processing (ICCSP), 0588-0592 Aloysius N, Geetha M (2017) A review on Deep Convolutional neural networks, International Conference on Communication and Signal Processing (ICCSP), 0588-0592
3.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks, Proceedings of the 25th International Conference on Neural Information Processing Systems, 1097–1105, Lake Tahoe, Nevada Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks, Proceedings of the 25th International Conference on Neural Information Processing Systems, 1097–1105, Lake Tahoe, Nevada
4.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going Deeper with Convolutions, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going Deeper with Convolutions, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
5.
Zurück zum Zitat LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324 CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324 CrossRef
7.
Zurück zum Zitat Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1701–1708 Taigman Y, Yang M, Ranzato M, Wolf L (2014) Deepface: Closing the gap to human-level performance in face verification, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1701–1708
9.
Zurück zum Zitat Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823 Schroff F, Kalenichenko D, Philbin J (2015) Facenet: A unified embedding for face recognition and clustering, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823
10.
Zurück zum Zitat Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032 MathSciNetCrossRef Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032 MathSciNetCrossRef
12.
Zurück zum Zitat Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302 CrossRef Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302 CrossRef
13.
Zurück zum Zitat Ng CJ, Teoh ABJ (2015) DCTNet: A simple learning-free approach for face recognition, Proceedings of APSIPA, 761–768 Ng CJ, Teoh ABJ (2015) DCTNet: A simple learning-free approach for face recognition, Proceedings of APSIPA, 761–768
14.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778
15.
Zurück zum Zitat Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition, In BMVC, 1–12 Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition, In BMVC, 1–12
16.
Zurück zum Zitat Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1891–1898 Sun Y, Wang X, Tang X (2014) Deep learning face representation from predicting 10,000 classes. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1891–1898
19.
Zurück zum Zitat Zheng Q, Zhao P, Li Y, Wang H, Yang Y (2021) Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Comput Appl 33:7723–7745 CrossRef Zheng Q, Zhao P, Li Y, Wang H, Yang Y (2021) Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification. Neural Comput Appl 33:7723–7745 CrossRef
20.
Zurück zum Zitat Zheng Q, Yang M, Tian X, Jiang N, Wang D (2020) A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification. Discrete Dyn Nat Soc 2020:4706576 MATH Zheng Q, Yang M, Tian X, Jiang N, Wang D (2020) A Full Stage Data Augmentation Method in Deep Convolutional Neural Network for Natural Image Classification. Discrete Dyn Nat Soc 2020:4706576 MATH
21.
Zurück zum Zitat Zheng Q, Yang M, Yang J, Zhang Q, Zhang X (2018) Improvement of Generalization Ability of Deep CNN via Implicit Regularization in Two-Stage Training Process. IEEE Access 6:15844–15869 CrossRef Zheng Q, Yang M, Yang J, Zhang Q, Zhang X (2018) Improvement of Generalization Ability of Deep CNN via Implicit Regularization in Two-Stage Training Process. IEEE Access 6:15844–15869 CrossRef
22.
Zurück zum Zitat Zheng Q, Tian X, Yang M, Su H (2021) CLMIP: cross-layer manifold invariance based pruning method of deep convolutional neural network for real-time road type recognition. Multidimens Syst Signal Process 32:239–262 CrossRef Zheng Q, Tian X, Yang M, Su H (2021) CLMIP: cross-layer manifold invariance based pruning method of deep convolutional neural network for real-time road type recognition. Multidimens Syst Signal Process 32:239–262 CrossRef
23.
Zurück zum Zitat Zheng Q, Tian X, Yang M, Wu Y, Su H (2020) PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning. Multidimens Syst Signal Process 31:793–827 MathSciNetCrossRef Zheng Q, Tian X, Yang M, Wu Y, Su H (2020) PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning. Multidimens Syst Signal Process 31:793–827 MathSciNetCrossRef
24.
Zurück zum Zitat Wu Z, Song S, Khosla A, Tang X, Xiao J (2014) 3D shapenets for 2.5D object recognition and next-best-view prediction., IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Wu Z, Song S, Khosla A, Tang X, Xiao J (2014) 3D shapenets for 2.5D object recognition and next-best-view prediction., IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
25.
Zurück zum Zitat Maturana D, Scherer S (2015) VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Maturana D, Scherer S (2015) VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
26.
Zurück zum Zitat Kim D, Hernandez M, Choi J, Medioni G (2017) Deep 3D Face Identification, International Joint Conference on Biometrics (IJCB), 133–142 Kim D, Hernandez M, Choi J, Medioni G (2017) Deep 3D Face Identification, International Joint Conference on Biometrics (IJCB), 133–142
27.
Zurück zum Zitat Neto JBC, Marana AN (2017) Utilizing Deep Learning and 3DLBP for 3D Face Recognition, In: Mendoza M., Velastin S. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIAPR). 10657, LNCS, Springer, Cham Neto JBC, Marana AN (2017) Utilizing Deep Learning and 3DLBP for 3D Face Recognition, In: Mendoza M., Velastin S. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIAPR). 10657, LNCS, Springer, Cham
28.
Zurück zum Zitat Feng J, Guo Q, Guan Y, Wu M, Zhang X, Ti C (2019) 3D Face Recognition Method Based on Deep Convolutional Neural Network, In: Panigrahi B., Trivedi M., Mishra K., Tiwari, S., Singh P. (eds.) Smart Innovations in Communication and Computational Sciences, Advances in Intelligent Systems and Computing, Springer, Singapore, 670, 123–130 Feng J, Guo Q, Guan Y, Wu M, Zhang X, Ti C (2019) 3D Face Recognition Method Based on Deep Convolutional Neural Network, In: Panigrahi B., Trivedi M., Mishra K., Tiwari, S., Singh P. (eds.) Smart Innovations in Communication and Computational Sciences, Advances in Intelligent Systems and Computing, Springer, Singapore, 670, 123–130
29.
Zurück zum Zitat Randen T, Husoy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310 CrossRef Randen T, Husoy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310 CrossRef
30.
Zurück zum Zitat Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256 CrossRef Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256 CrossRef
31.
Zurück zum Zitat Ganguly S, Bhattacharjee D, Nasipuri M (2014) 2.5D Face Images: Acquisition, Processing and Application, Proceedings of ICC 2014 -Computer Networks and Security, 36–44 Ganguly S, Bhattacharjee D, Nasipuri M (2014) 2.5D Face Images: Acquisition, Processing and Application, Proceedings of ICC 2014 -Computer Networks and Security, 36–44
32.
Zurück zum Zitat Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10(3):626–634 CrossRef Hyvarinen A (1999) Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans Neural Netw 10(3):626–634 CrossRef
38.
Zurück zum Zitat Sghaier S, Farhat W, Souani C (2018) Novel technique for 3D face recognition using anthropometric methodology. Int J Ambient Comput Intell 9(1):60–77 CrossRef Sghaier S, Farhat W, Souani C (2018) Novel technique for 3D face recognition using anthropometric methodology. Int J Ambient Comput Intell 9(1):60–77 CrossRef
40.
Zurück zum Zitat Hafez SF, Selim MM, Zayed HH (2015) 3D face recognition based on normal map features using selected Gabor filters and linear discriminant Analysis. Int J Biometr 7(4):373–389 CrossRef Hafez SF, Selim MM, Zayed HH (2015) 3D face recognition based on normal map features using selected Gabor filters and linear discriminant Analysis. Int J Biometr 7(4):373–389 CrossRef
41.
Zurück zum Zitat Torkhani G, Ladgham A, Sakly A, Mansouri MN (2017) A 3D–2D face recognition method based on extended Gabor wavelet combining curvature and edge detection. Signal Image Video Process 11:969–976 CrossRef Torkhani G, Ladgham A, Sakly A, Mansouri MN (2017) A 3D–2D face recognition method based on extended Gabor wavelet combining curvature and edge detection. Signal Image Video Process 11:969–976 CrossRef
42.
Zurück zum Zitat Thakare NM (2020) Hybridization of facial features and use of multi modal information for 3D face recognition. J Adv Computer Eng Technol 6:1 Thakare NM (2020) Hybridization of facial features and use of multi modal information for 3D face recognition. J Adv Computer Eng Technol 6:1
43.
Zurück zum Zitat Chouchane A, Belahcene M (2015) 3D and 2D face recognition using integral projection curves based depth and intensity images. Int J Intell Syst Technol Appl 14(1):50–69 Chouchane A, Belahcene M (2015) 3D and 2D face recognition using integral projection curves based depth and intensity images. Int J Intell Syst Technol Appl 14(1):50–69
44.
Zurück zum Zitat Li C, Tan Y, Wang D, Ma P (2017) Research on 3D face recognition method in cloud environment based on semi supervised clustering algorithm. Multimedia Tools Appl 6:17055–17073 CrossRef Li C, Tan Y, Wang D, Ma P (2017) Research on 3D face recognition method in cloud environment based on semi supervised clustering algorithm. Multimedia Tools Appl 6:17055–17073 CrossRef
45.
Zurück zum Zitat Chandrakala M, Ravi S (2017) Effective 3D face recognition technique based on gabor and LTP features. Int J Eng Adv Technol (IJEAT) 8(2S):284–290 Chandrakala M, Ravi S (2017) Effective 3D face recognition technique based on gabor and LTP features. Int J Eng Adv Technol (IJEAT) 8(2S):284–290
46.
Zurück zum Zitat Ratyal NI, Taj I, Sajid M,Ali N, Mahmood A, Razzaq S (2019) Three-dimensional face recognition using variance-based registration and subject-specific descriptors, Int J Adv Robotic Syst, 16 Ratyal NI, Taj I, Sajid M,Ali N, Mahmood A, Razzaq S (2019) Three-dimensional face recognition using variance-based registration and subject-specific descriptors, Int J Adv Robotic Syst, 16
47.
Zurück zum Zitat Feng J, Guo Q, Guan Y, Wu M, Zhang X, Ti C (2019) 3D Face Recognition Method Based on Deep Convolutional Neural Network. In: Panigrahi B., Trivedi M., Mishra K., Tiwari S., Singh P. (eds) Smart Innovations in Communication and Computational Sciences. Advances in Intelligent Systems and Computing, 670 Feng J, Guo Q, Guan Y, Wu M, Zhang X, Ti C (2019) 3D Face Recognition Method Based on Deep Convolutional Neural Network. In: Panigrahi B., Trivedi M., Mishra K., Tiwari S., Singh P. (eds) Smart Innovations in Communication and Computational Sciences. Advances in Intelligent Systems and Computing, 670
Metadaten
Titel
3D Face Recognition Using a Fusion of PCA and ICA Convolution Descriptors
verfasst von
Koushik Dutta
Debotosh Bhattacharjee
Mita Nasipuri
Ondrej Krejcar
Publikationsdatum
25.02.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 4/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-022-10761-5

Weitere Artikel der Ausgabe 4/2022

Neural Processing Letters 4/2022 Zur Ausgabe