Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

3D Finite Element Vibrational Analysis of T385 Turbine Rotor BLISK Using SAFE Diagram

verfasst von: Revanna Jai Maruthi, Rajeevalochanam Prathapanayaka, Nanjundaiah Vinod Kumar

Erschienen in: Proceedings of the 6th National Symposium on Rotor Dynamics

Verlag: Springer Singapore

share
TEILEN

Abstract

Integrally bladed rotors (BLISK) are most stressed part of aircraft engines due to high rotational speeds, elevated temperatures and pressures. Turbine blades fail mainly due to fatigue under alternating stresses resulting from vibration of rotor systems. Non-uniform pressure field is experienced by turbine BLISK due to interaction of stator and rotor blades which acts as a source of excitation during turbine operation. The number of stator blades dictates the occurrence of resonance in the rotor BLISK during steady-state operation. Therefore, it is necessary to design a mechanically feasible rotor with respect to stator and verify its modal and harmonic response to ensure its resonance-free operation. Design and development of T385 turbine stage for 1 kN small gas turbine engine are carried out in Propulsion Division, CSIR-NAL. The dynamic behaviour of T385 turbine rotor BLISK is evaluated for vibration reliability. This paper presents vibrational analysis of the T385 turbine rotor BLISK using finite element technique to evaluate critical nodal diameter, critical frequencies and response in engine environment. The turbine speed is 50,500 rpm at the engine design point based on the inlet temperature. Detailed vibration analysis of T385 turbine is carried out using FEA to plot Campbell and SAFE diagrams. The critical nodal diameter extracted from plotted SAFE diagram is 19, which is very well agreeing with Bertini analytical formulae. The Campbell diagram is plotted for T385 turbine at critical nodal diameter of 19. The obtained critical speed from this Campbell diagram is 33,000 rpm, which ensures the rotor is safe in the operating conditions.

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
1.
Zurück zum Zitat Singh MP, Vargo JJ, Schiffer DM (1988) Safe diagram—a design and reliability tool for turbine blading. J Eng Gas Turb Power 111:601–609 Singh MP, Vargo JJ, Schiffer DM (1988) Safe diagram—a design and reliability tool for turbine blading. J Eng Gas Turb Power 111:601–609
2.
Zurück zum Zitat Singh MP, Thakur BK, Sullivan WE, Donald G (2003) Resonance identification for impellers. In: Proceedings of the thirty second turbomachinery symposium Singh MP, Thakur BK, Sullivan WE, Donald G (2003) Resonance identification for impellers. In: Proceedings of the thirty second turbomachinery symposium
3.
Zurück zum Zitat Bertini L, Monelli BD, Neri P, Santus C, Guglielmo A (2013) Explanation and application of the SAFE diagram. In: Proceedings of the 11th international conference RASD 2013, Pisa, pp 1–15 Bertini L, Monelli BD, Neri P, Santus C, Guglielmo A (2013) Explanation and application of the SAFE diagram. In: Proceedings of the 11th international conference RASD 2013, Pisa, pp 1–15
4.
Zurück zum Zitat Lošak P, Malenovsky E (2007) Contribution to the dynamic behavior of bladed disks. Appl Comput Mech 1:531–540 Lošak P, Malenovsky E (2007) Contribution to the dynamic behavior of bladed disks. Appl Comput Mech 1:531–540
5.
Zurück zum Zitat Choi Y-S, Lee K-H (2010) Investigation of blade failure in a gas turbine. J Mech Sci Technol 24(10):1969–1974 CrossRef Choi Y-S, Lee K-H (2010) Investigation of blade failure in a gas turbine. J Mech Sci Technol 24(10):1969–1974 CrossRef
6.
Zurück zum Zitat Hassan M (2008) Vibratory analysis of turbomachinery blades. A project document. Rensselaer Polytechnic Institute, Hartford Hassan M (2008) Vibratory analysis of turbomachinery blades. A project document. Rensselaer Polytechnic Institute, Hartford
7.
Zurück zum Zitat Rajeevalochanam P, Agnimitra Sunkara SN, Mayandi B, Ganesh BB, Chappati VSK, Kumar K (2016) Design of highly loaded turbine stage for small gas turbine engine. In: ASME turbo expo 2016, South Korea Rajeevalochanam P, Agnimitra Sunkara SN, Mayandi B, Ganesh BB, Chappati VSK, Kumar K (2016) Design of highly loaded turbine stage for small gas turbine engine. In: ASME turbo expo 2016, South Korea
8.
Zurück zum Zitat Chromek L (2016) Design of the blisk of an aircraft turbojet engine and verification of its resonance free operation. Appl Comput Mech Chromek L (2016) Design of the blisk of an aircraft turbojet engine and verification of its resonance free operation. Appl Comput Mech
Metadaten
Titel
3D Finite Element Vibrational Analysis of T385 Turbine Rotor BLISK Using SAFE Diagram
verfasst von
Revanna Jai Maruthi
Rajeevalochanam Prathapanayaka
Nanjundaiah Vinod Kumar
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5701-9_45

Premium Partner

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.