Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

05.04.2018 | Ausgabe 6/2020

The Journal of Supercomputing 6/2020

3D visualization and cluster analysis of unstructured protein sequences using ARCSA with a file conversion approach

Zeitschrift:
The Journal of Supercomputing > Ausgabe 6/2020
Autoren:
U. Vignesh, R. Parvathi

Abstract

This work explains synthesis of protein structures based on the unsupervised learning method known as clustering. Protein structure prediction was performed for different crab and egg datasets with inputs collected from the Protein Data Bank (PDB ID: 3LIG, 2W3Z, 3ZVQ, 2KLR and 2YIZ). The three-dimensional protein structure was merged together with the filtering instances inbuilt in data mining techniques known as MergeSets. The problem description in this proposed methodology, referred to as attribute-related cluster sequence analysis, is to identify a good working algorithm for clustering of protein structures by comparing four existing algorithms: k-means, expectation maximization, farthest first and COBWEB. Experiments are conducted with the BioWeka data mining tool, Modeler 9.15 and the PyMOL tool with scripts using the Python programming language. This paper shows that the expectation maximization algorithm is the best for structured protein clustering, and this will also pave the way for identifying better algorithms for supervised learning methods.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2020

The Journal of Supercomputing 6/2020 Zur Ausgabe

Premium Partner

    Bildnachweise