Skip to main content
Erschienen in: Microsystem Technologies 6/2019

30.08.2018 | Technical Paper

A 0.6 V 117 nW high performance energy efficient system-on-chip (SoC) CMOS temperature sensor in 0.18 µm CMOS for aerospace applications

verfasst von: Deepak Prasad, Vijay Nath, Vedam Vishwanthan, Manish Mehta

Erschienen in: Microsystem Technologies | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research article presents and describes a novel design with improved performance low power consumption threshold voltage based CMOS thermal sensor for aerospace applications. The proposed temperature sensor utilizes the change in behavior of threshold voltage of MOSFET with variation in temperature. The challenge while designing the temperature sensor was to achieve the linearize output voltage with respect to change in temperature. Process corner analysis has been done to check the robustness of the circuit while performance analysis and sensitivity of the temperature sensor have been verified in the occurrence of parasitic. The proposed temperature sensor is featured with low power consumption, less power supply voltage utilization, high performance and sensitivity with inaccuracy as low as possible. The presented temperature sensor utilizes an active area of 18 µm × 9.85 µm with 117 nW power consumption. An improved linear performance with an inaccuracy of merely − 0.01 to + 0.47 °C over a wide temperature range of − 20 to + 120 °C is presented here. The sensitivity of proposed temperature sensor is found to be as high as 0.77 mV/°C. The proposed temperature sensor is realized and tested in Cadence virtuoso mixed signal design atmosphere using 0.18 µm CMOS technology and further investigated with support of tool from Mentor graphics. The engaged area of pad-limited chip is measured to be 0.96 mm2.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bakker A, Huijsing JH (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid State Circuits 31(7):933–937CrossRef Bakker A, Huijsing JH (1996) Micropower CMOS temperature sensor with digital output. IEEE J Solid State Circuits 31(7):933–937CrossRef
Zurück zum Zitat Chen P, Chen C-C, Tsai C-C, Lu W-F (2005) A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J Solid State Circuits 40(8):1642–1648CrossRef Chen P, Chen C-C, Tsai C-C, Lu W-F (2005) A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J Solid State Circuits 40(8):1642–1648CrossRef
Zurück zum Zitat Cheon J et al (2009) A single-chip CMOS smoke and temperature sensor for an intelligent fire detector. IEEE Sens J 9(8):914–921CrossRef Cheon J et al (2009) A single-chip CMOS smoke and temperature sensor for an intelligent fire detector. IEEE Sens J 9(8):914–921CrossRef
Zurück zum Zitat Ha D, Woo K, Meninger S, Xanthopoulos T, Crain E, Ham D (2012) Time-domain CMOS temperature sensors with dual delay-locked loops for microprocessor thermal monitoring. In: IEEE transactions on very large scale integration (VLSI) systems, vol 20, no 9, pp 1590–1601. https://doi.org/10.1109/TVLSI.2011.2161783 Ha D, Woo K, Meninger S, Xanthopoulos T, Crain E, Ham D (2012) Time-domain CMOS temperature sensors with dual delay-locked loops for microprocessor thermal monitoring. In: IEEE transactions on very large scale integration (VLSI) systems, vol 20, no 9, pp 1590–1601. https://​doi.​org/​10.​1109/​TVLSI.​2011.​2161783
Zurück zum Zitat Jeong S, Foo Z, Lee Y, Sim JY, Blaauw D, Sylvester D (2014) A fully integrated 71nW CMOS temperature sensor for low power wireless sensor node. IEEE J Solid State Circuit 49(8):1682–1693CrossRef Jeong S, Foo Z, Lee Y, Sim JY, Blaauw D, Sylvester D (2014) A fully integrated 71nW CMOS temperature sensor for low power wireless sensor node. IEEE J Solid State Circuit 49(8):1682–1693CrossRef
Zurück zum Zitat Kim K, Lee H, Kim C (2013) 366-kS/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock. In: IEEE transactions on very large scale integration (VLSI) systems, vol 21, no 10, pp 1950–1954. https://doi.org/10.1109/TVLSI.2012.222089 Kim K, Lee H, Kim C (2013) 366-kS/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock. In: IEEE transactions on very large scale integration (VLSI) systems, vol 21, no 10, pp 1950–1954. https://​doi.​org/​10.​1109/​TVLSI.​2012.​222089
Zurück zum Zitat Law MK, Bermak A (2009) A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans Circuits Syst II 56(12):891–895CrossRef Law MK, Bermak A (2009) A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Trans Circuits Syst II 56(12):891–895CrossRef
Zurück zum Zitat Leung KN, Mok PKT (2003) A CMOS voltage reference based on weighted ΔV GS for CMOS low-dropout linear regulators. IEEE J Solid State Circuits 38(1):146–150CrossRef Leung KN, Mok PKT (2003) A CMOS voltage reference based on weighted ΔV GS for CMOS low-dropout linear regulators. IEEE J Solid State Circuits 38(1):146–150CrossRef
Zurück zum Zitat Martin W (2013) Variation-aware adaptive voltage scaling for digital CMOS circuits. Springer series in advanced microelectronics, vol 41. Springer, Amsterdam Martin W (2013) Variation-aware adaptive voltage scaling for digital CMOS circuits. Springer series in advanced microelectronics, vol 41. Springer, Amsterdam
Zurück zum Zitat Muller RS, Kamins TI (1986) Device electronics for integrated circuits. Wiley, New York, p 480 Muller RS, Kamins TI (1986) Device electronics for integrated circuits. Wiley, New York, p 480
Zurück zum Zitat Prasad D, Nath V (2017) An overview of temperature sensors. In: Nath V, Mandal J (eds) Proceeding of the second international conference on microelectronics, computing and communication systems (MCCS 2017). Lecture Notes in Electrical Engineering, vol 476. Springer, Singapore Prasad D, Nath V (2017) An overview of temperature sensors. In: Nath V, Mandal J (eds) Proceeding of the second international conference on microelectronics, computing and communication systems (MCCS 2017). Lecture Notes in Electrical Engineering, vol 476. Springer, Singapore
Zurück zum Zitat Prasad D, Nath V (2018) An ultra-low power high-performance CMOS temperature sensor with an inaccuracy of − 0.3°C/0.1°C for aerospace applications. Microsyst Technol 24(3):1553–1563CrossRef Prasad D, Nath V (2018) An ultra-low power high-performance CMOS temperature sensor with an inaccuracy of − 0.3°C/0.1°C for aerospace applications. Microsyst Technol 24(3):1553–1563CrossRef
Zurück zum Zitat Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York Razavi B (2001) Design of analog CMOS integrated circuits. McGraw-Hill, New York
Zurück zum Zitat Souri K, Chae Y, Thus F, and Makinwa KAA (2014) A 0.85 V 600 nW all-CMOS temperature sensor with an inaccuracy of ± 0.4 °C (3σ) from − 40 °C to 125 °C. In: IEEE solid state circuits conference digest of technical papers, pp 222–223. https://doi.org/10.1109/isscc.2014.6757409 Souri K, Chae Y, Thus F, and Makinwa KAA (2014) A 0.85 V 600 nW all-CMOS temperature sensor with an inaccuracy of ± 0.4 °C (3σ) from − 40 °C to 125 °C. In: IEEE solid state circuits conference digest of technical papers, pp 222–223. https://​doi.​org/​10.​1109/​isscc.​2014.​6757409
Zurück zum Zitat Tsividis Y (2003) Operation and modeling of the transistor MOS, 2nd edn. Oxford University Press, USA Tsividis Y (2003) Operation and modeling of the transistor MOS, 2nd edn. Oxford University Press, USA
Zurück zum Zitat Wu C, Chan W-S, Lin T-H (2011) A 80 kS/s36 W resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18 mCMOS. In: IEEE symposium on VLSI circuits digest of technical papers, pp 222–223 Wu C, Chan W-S, Lin T-H (2011) A 80 kS/s36 W resistor-based temperature sensor using BGR-free SAR ADC with a unevenly-weighted resistor string in 0.18 mCMOS. In: IEEE symposium on VLSI circuits digest of technical papers, pp 222–223
Zurück zum Zitat Zhao C (2014) CMOS on chip temperature sensor, Dissertation. Iowa State University, Ames Zhao C (2014) CMOS on chip temperature sensor, Dissertation. Iowa State University, Ames
Metadaten
Titel
A 0.6 V 117 nW high performance energy efficient system-on-chip (SoC) CMOS temperature sensor in 0.18 µm CMOS for aerospace applications
verfasst von
Deepak Prasad
Vijay Nath
Vedam Vishwanthan
Manish Mehta
Publikationsdatum
30.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 6/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4115-8

Weitere Artikel der Ausgabe 6/2019

Microsystem Technologies 6/2019 Zur Ausgabe

Neuer Inhalt