Skip to main content
Erschienen in: Wireless Personal Communications 1/2017

26.04.2017

A 0.9 V, 4.57 mW UWB LNA with Improved Gain and Low Power Consumption for 3.1–10.6 GHz Ultra-Wide Band Applications

verfasst von: Sunil Pandey, Tushar Gawande, Pravin N. Kondekar

Erschienen in: Wireless Personal Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present a 0.9 V, 4.57 mW UWB LNA with improved gain and low power consumption for 3.1–10.6 GHz ultra-wide band applications. In its input stage, a common gate amplifier is used to achieve approximately \(50\,\Omega\) input resistance across the entire band, instead of using a common source stage. However, the current reused technique is used to save power consumption by using the same DC current path for both transistors in the designed circuit instead of utilizing two stage cascade configuration. The output matching is achieved by tuning the total parasitic capacitance with the inductor \(\hbox {L}_{d1}\) at the output node. In its inter stage, inter stage matching technique is used to make the flat gain response and to extend the bandwidth, simultaneously. From simulation results, the designed LNA shows an average power gain \(\hbox {S}_{21}\) of 15.8  dB with the gain variation of \(\pm 0.97 \hbox { dB}\), an input return loss \(\hbox {S}_{11}\) of −30 to −10 dB, a high reverse isolation \(\hbox {S}_{12}\) of −59 to −43 dB, output return loss \(\hbox {S}_{22}\) of −16 to −10 dB, and a small group-delay variation of \(\pm 34\) ps across the entire band. It also shows minimum achievable noise figure below 3.2 dB, and a power consumption of 4.57 mW from a supply voltage of 0.9 V. When a two tone test is performed at 8 GHz with 10 MHz spacing, the linearity of the designed LNA such as 1-dB compression point and third order input intercept point are −22.5 and −9 dBm, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rastegar, H., Saryazdi, S., & Hakimi, A. (2012). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786. Rastegar, H., Saryazdi, S., & Hakimi, A. (2012). Wideband and multiband CMOS LNAs: State-of-the-art and future prospects. Microelectronics Journal, 44(9), 774–786.
2.
Zurück zum Zitat Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in \(0.13\,\upmu\)m CMOS process. Microelectronics Journal, 44(3), 201–209.CrossRef Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in \(0.13\,\upmu\)m CMOS process. Microelectronics Journal, 44(3), 201–209.CrossRef
3.
Zurück zum Zitat Nakhlestani, A., Hakimi, A., & Movahhedi, M. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43(7), 444–451.CrossRef Nakhlestani, A., Hakimi, A., & Movahhedi, M. (2012). A novel configuration for UWB LNA suitable for low-power and low-voltage applications. Microelectronics Journal, 43(7), 444–451.CrossRef
4.
Zurück zum Zitat Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44(9), 821–826.CrossRef Shim, J., Yang, T., & Jeong, J. (2013). Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectronics Journal, 44(9), 821–826.CrossRef
5.
Zurück zum Zitat Slimane, A., Trabelsi, M., & Belaroussi, M. T. (2011). A 0.9 V, 7 mW UWB LNA for 3.1–10.6 GHz wireless applications in \(0.18\,\mu \text{ m }\) CMOS technology. Microelectronics Journal, 42(11), 1263–1268.CrossRef Slimane, A., Trabelsi, M., & Belaroussi, M. T. (2011). A 0.9 V, 7 mW UWB LNA for 3.1–10.6 GHz wireless applications in \(0.18\,\mu \text{ m }\) CMOS technology. Microelectronics Journal, 42(11), 1263–1268.CrossRef
6.
Zurück zum Zitat Pandey, S., & Singh, J. (2015). A 0.6 V, low-power and high-gain ultra-wideband low-noise amplifier with forward-body-bias technique for low-voltage operations. IET Microwaves Antennas & Propagation, 9(8), 728–734. Pandey, S., & Singh, J. (2015). A 0.6 V, low-power and high-gain ultra-wideband low-noise amplifier with forward-body-bias technique for low-voltage operations. IET Microwaves Antennas & Propagation, 9(8), 728–734.
7.
Zurück zum Zitat Hsieh, J.-Y., Wang, T., & Lu, S.-S. (2009). Wideband low-noise amplifier by LC load-reusing technique. Electronics Letters, 45(25), 1280–1281.CrossRef Hsieh, J.-Y., Wang, T., & Lu, S.-S. (2009). Wideband low-noise amplifier by LC load-reusing technique. Electronics Letters, 45(25), 1280–1281.CrossRef
8.
Zurück zum Zitat Chang, C.-H., Wang, T., & Jou, C. F. (2012). Dual cross-coupling LNA with forward body bias technique. Electronics Letters, 48(18), 280–281.CrossRef Chang, C.-H., Wang, T., & Jou, C. F. (2012). Dual cross-coupling LNA with forward body bias technique. Electronics Letters, 48(18), 280–281.CrossRef
9.
Zurück zum Zitat Wang, Y.-H., Lin, K.-T., Wang, T., Chiu, H.-W., Chen, H.-C., & Lu, S.-S. (2010). A 2.1–6 GHz tunnable-band LNA with adaptive frequency responses by transisitor size scaling. IEEE Mirocwave and Wireless Components Letters, 20(6), 346–348.CrossRef Wang, Y.-H., Lin, K.-T., Wang, T., Chiu, H.-W., Chen, H.-C., & Lu, S.-S. (2010). A 2.1–6 GHz tunnable-band LNA with adaptive frequency responses by transisitor size scaling. IEEE Mirocwave and Wireless Components Letters, 20(6), 346–348.CrossRef
10.
Zurück zum Zitat Wang, T., Chen, H.-C., Chiu, H.-W., Lin, Y.-S., Huang, G.-W., & Shey-Shi, L. (2006). Micromachined CMOS LNA and VCO by CMOS-compatible ICP deep trench technology. IEEE Transactions on Microwave Theory and Techniques, 54(2), 580–588.CrossRef Wang, T., Chen, H.-C., Chiu, H.-W., Lin, Y.-S., Huang, G.-W., & Shey-Shi, L. (2006). Micromachined CMOS LNA and VCO by CMOS-compatible ICP deep trench technology. IEEE Transactions on Microwave Theory and Techniques, 54(2), 580–588.CrossRef
11.
Zurück zum Zitat Meng-Ting, H., Yi-Cheng, C., & Yu-Zhang, H. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44(12), 1223–1230.CrossRef Meng-Ting, H., Yi-Cheng, C., & Yu-Zhang, H. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal, 44(12), 1223–1230.CrossRef
12.
Zurück zum Zitat Sapone, G., & Palmisano, G. (2011). A 3–10 GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory and Techniques, 59(3), 678–686.CrossRef Sapone, G., & Palmisano, G. (2011). A 3–10 GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Transactions on Microwave Theory and Techniques, 59(3), 678–686.CrossRef
13.
Zurück zum Zitat Hsieh, H. -H., Wu, P.-Y., Jou, C.-P., Hsueh, F.-L., & Huang, G.-W. (2011). 60 GHz high gain low noise amplifiers with a common-gate inductive feedback in 65 nm CMOS. In RFIC symposium (pp. 1–4). Hsieh, H. -H., Wu, P.-Y., Jou, C.-P., Hsueh, F.-L., & Huang, G.-W. (2011). 60 GHz high gain low noise amplifiers with a common-gate inductive feedback in 65 nm CMOS. In RFIC symposium (pp. 1–4).
14.
Zurück zum Zitat Lu, Y., Yeo, K. S., Cabuk, A., Ma, J., Do, M. A., & Lu, Z. (2006). A novel CMOS low noise amplifier design for 3.1–10.6 GHz ultra-wideband wireless receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(8), 1683–1692.CrossRef Lu, Y., Yeo, K. S., Cabuk, A., Ma, J., Do, M. A., & Lu, Z. (2006). A novel CMOS low noise amplifier design for 3.1–10.6 GHz ultra-wideband wireless receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(8), 1683–1692.CrossRef
15.
Zurück zum Zitat Weng, R.-M., Liu, C.-Y., & Lin, P.-C. (2010). A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2077–2083.CrossRef Weng, R.-M., Liu, C.-Y., & Lin, P.-C. (2010). A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Transactions on Microwave Theory and Techniques, 58(8), 2077–2083.CrossRef
16.
Zurück zum Zitat Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69(1), 119–125.CrossRef Wan, Q., Wang, Q., & Zheng, Z. (2015). Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. AEU-International Journal of Electronics and Communications, 69(1), 119–125.CrossRef
17.
Zurück zum Zitat Shim, Y., Kim, C.-W., Lee, J., & Lee, S.-G. (2007). Design of full band UWB common-gate LNA. The IEEE Microwave and Wireless Components Letters, 17(10), 721–723.CrossRef Shim, Y., Kim, C.-W., Lee, J., & Lee, S.-G. (2007). Design of full band UWB common-gate LNA. The IEEE Microwave and Wireless Components Letters, 17(10), 721–723.CrossRef
18.
Zurück zum Zitat Chen, C. C., & Wang, Y. C. (2013). 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. AEU-International Journal of Electronics and Communications, 67(6), 500–503.CrossRef Chen, C. C., & Wang, Y. C. (2013). 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. AEU-International Journal of Electronics and Communications, 67(6), 500–503.CrossRef
19.
Zurück zum Zitat Sarkar, A., Das, A. K., De, S., & Sarkar, C. K. (2012). Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectronic Journal, 43(11), 873–882.CrossRef Sarkar, A., Das, A. K., De, S., & Sarkar, C. K. (2012). Effect of gate engineering in double-gate MOSFETs for analog/RF applications. Microelectronic Journal, 43(11), 873–882.CrossRef
20.
Zurück zum Zitat Wan, Q., Wang, Q., & Zheng, Z. (2010). Low-power current-reused RF front-end based on optimized transformers topology. Elsevier Integration, the VLSI Journal, 43, 230–236.CrossRef Wan, Q., Wang, Q., & Zheng, Z. (2010). Low-power current-reused RF front-end based on optimized transformers topology. Elsevier Integration, the VLSI Journal, 43, 230–236.CrossRef
21.
Zurück zum Zitat Brederlow, R., et al. (2001). A mixed-signal design roadmap. IEEE Design & Test of Computers, 18(6), 34–36.CrossRef Brederlow, R., et al. (2001). A mixed-signal design roadmap. IEEE Design & Test of Computers, 18(6), 34–36.CrossRef
22.
Zurück zum Zitat Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 528–529.CrossRef Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters, 44(8), 528–529.CrossRef
Metadaten
Titel
A 0.9 V, 4.57 mW UWB LNA with Improved Gain and Low Power Consumption for 3.1–10.6 GHz Ultra-Wide Band Applications
verfasst von
Sunil Pandey
Tushar Gawande
Pravin N. Kondekar
Publikationsdatum
26.04.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4185-4

Weitere Artikel der Ausgabe 1/2017

Wireless Personal Communications 1/2017 Zur Ausgabe

Neuer Inhalt