Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Wireless Personal Communications 3/2016

01.02.2016

A 3–6 GHz Current Reused Noise Canceling Low Noise Amplifier for WLAN and WPAN Applications

verfasst von: Alireza Saberkari, V. Shirmohammadli, M. C. E. Yagoub

Erschienen in: Wireless Personal Communications | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

A new ultra-wideband common gate low noise amplifier (LNA) for 3–6 GHz WLAN and WPAN applications is presented in which a current reused noise canceling structure utilized in the first stage not only provides a suitable noise performance, but also enhances the linearity characteristics of the LNA in a power efficient manner needed by WLAN/WPAN applications. The overall structure of the proposed LNA, consisting of three stages, namely input matching common gate stage with noise canceling, gain stage, and buffer one, is designed, laid out, and analyzed in 0.18 µm RF CMOS process. The LNA has a noise figure of 3.5–3.6 dB, a high and flat power gain of 20.27 ± 0.13 dB, and input and output losses of better than −11 and −14 dB, respectively, over the entire frequency band of 3–5 GHz, while these parameters are 3.5 dB, 20.75 ± 0.25 dB, −15 and −9 dB for the frequency band of 5–6 GHz, respectively. IIP2 and IIP3 of the proposed topology are equal to 25.9 and −1.85 dBm, respectively, at 4 GHz frequency. The proposed LNA has 15.3 mW power dissipation from a 1.8 V supply.
Literatur
1.
Zurück zum Zitat Siwiak, K., Withington, P., & Phelan, S. (2001). Ultra-wide band radio: The emergence of an important new technology. In Proceedings of IEEE Vehicular Technology Conference, (VTC'01) (Vol. 2, pp. 1169–1172). Siwiak, K., Withington, P., & Phelan, S. (2001). Ultra-wide band radio: The emergence of an important new technology. In Proceedings of IEEE Vehicular Technology Conference, (VTC'01) (Vol. 2, pp. 1169–1172).
5.
Zurück zum Zitat Rashtian, H., & Mirabbasi, Sh. (2014). Applications of body biasing in multistage CMOS low-noise amplifiers. IEEE Transaction on Circuits and Systems I: Reg Papers, 61(6), 1638–1647. CrossRef Rashtian, H., & Mirabbasi, Sh. (2014). Applications of body biasing in multistage CMOS low-noise amplifiers. IEEE Transaction on Circuits and Systems I: Reg Papers, 61(6), 1638–1647. CrossRef
6.
Zurück zum Zitat Khurram, M., & Rezaul Hasan, S. M. (2012). A 3–5 GHz current-reuse Gm-boosted CG LNA for ultra wideband in 130 nm CMOS. IEEE Transaction on VLSI Systems, 20(3), 400–409. CrossRef Khurram, M., & Rezaul Hasan, S. M. (2012). A 3–5 GHz current-reuse Gm-boosted CG LNA for ultra wideband in 130 nm CMOS. IEEE Transaction on VLSI Systems, 20(3), 400–409. CrossRef
7.
Zurück zum Zitat Kim, C. W., Kang, M. S., Anh, P. T., Kim, H. T., & Lee, S. G. (2005). An ultra-wideband CMOS low noise amplifier for 3–5GHz UWB system. IEEE Journal of Solid-state Circuits, 40(2), 544–547. CrossRef Kim, C. W., Kang, M. S., Anh, P. T., Kim, H. T., & Lee, S. G. (2005). An ultra-wideband CMOS low noise amplifier for 3–5GHz UWB system. IEEE Journal of Solid-state Circuits, 40(2), 544–547. CrossRef
8.
Zurück zum Zitat Chang, C. P., & Choung, H. R. (2005). 0.18 µm 3–6 GHz CMOS broadband LNA for UWB radio. Electronics Letters, 41(12), 696–698. CrossRef Chang, C. P., & Choung, H. R. (2005). 0.18 µm 3–6 GHz CMOS broadband LNA for UWB radio. Electronics Letters, 41(12), 696–698. CrossRef
9.
Zurück zum Zitat Zhang, H., Fan, X., & Sinencio, E. S. (2009). A low power, linearized, ultra wideband LNA design technique. IEEE Journal of Solid State Circuits, 44(2), 320–330. CrossRef Zhang, H., Fan, X., & Sinencio, E. S. (2009). A low power, linearized, ultra wideband LNA design technique. IEEE Journal of Solid State Circuits, 44(2), 320–330. CrossRef
10.
Zurück zum Zitat Shaeffer, D. K. & Lee, T. H. (1997). 1.5 V 1.5 GHz CMOS low noise amplifier. IEEE Journal of Solid State Circuits, 32(5), 745–759. Shaeffer, D. K. & Lee, T. H. (1997). 1.5 V 1.5 GHz CMOS low noise amplifier. IEEE Journal of Solid State Circuits, 32(5), 745–759.
11.
Zurück zum Zitat Nga, T. T. T. (2012). Ultra low-power low-noise amplifier design for 2.4 GHz ISM band applications. Ph.D. dissertation, Nanyang Tech. Univ. Nga, T. T. T. (2012). Ultra low-power low-noise amplifier design for 2.4 GHz ISM band applications. Ph.D. dissertation, Nanyang Tech. Univ.
12.
Zurück zum Zitat Lin, Y.-J., Hsu, S. H., Jin, J. D., & Chan, C. Y. (2007). A 3.1–10.6 GHz ultra wideband CMOS LNA with current-reused technique. IEEE Journal of Microwave and Wireless Component Letters, 17(3), 232–234. Lin, Y.-J., Hsu, S. H., Jin, J. D., & Chan, C. Y. (2007). A 3.1–10.6 GHz ultra wideband CMOS LNA with current-reused technique. IEEE Journal of Microwave and Wireless Component Letters, 17(3), 232–234.
13.
Zurück zum Zitat Saghafi, A. & Nabavi, A. (2006). An ultra-wideband low-noise amplifier for 3–5 GHz wireless systems. In Proceeding IEEE International Conference of Microelectronics (ICM’06) (pp. 20–23). Saghafi, A. & Nabavi, A. (2006). An ultra-wideband low-noise amplifier for 3–5 GHz wireless systems. In Proceeding IEEE International Conference of Microelectronics (ICM’06) (pp. 20–23).
14.
Zurück zum Zitat Ziabakhsh, S., Alavi-Rad, H., & Yagoub, M. C. E. (2012). A high-gain low-power 2–14 GHz ultra-wide-band CMOS LNA for wireless receivers. International Journal of Electronics and Communications (AEÜ), 66(9), 727–731. CrossRef Ziabakhsh, S., Alavi-Rad, H., & Yagoub, M. C. E. (2012). A high-gain low-power 2–14 GHz ultra-wide-band CMOS LNA for wireless receivers. International Journal of Electronics and Communications (AEÜ), 66(9), 727–731. CrossRef
15.
Zurück zum Zitat Khurram, M., & Rezaul Hasan, S. M. (2011). Novel analysis and optimization of gm-boosted common-gate UWB LNA. Microelectronics Journal, 42, 253–264. CrossRef Khurram, M., & Rezaul Hasan, S. M. (2011). Novel analysis and optimization of gm-boosted common-gate UWB LNA. Microelectronics Journal, 42, 253–264. CrossRef
16.
Zurück zum Zitat Liao, C. F. & Liu, S. I. (2007). A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE Journal of Slid-State Circuits, 42(2), 329–339. Liao, C. F. & Liu, S. I. (2007). A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE Journal of Slid-State Circuits, 42(2), 329–339.
17.
Zurück zum Zitat Asgaran, S., Jamal Deen, M., & Chen, C. H.(2007). Design of the input matching network of RF CMOS LNAs for low-power operation. IEEE Transactions on Circuits and Systems I: Reg. Papers, 54(3), 544–554. Asgaran, S., Jamal Deen, M., & Chen, C. H.(2007). Design of the input matching network of RF CMOS LNAs for low-power operation. IEEE Transactions on Circuits and Systems I: Reg. Papers, 54(3), 544–554.
18.
Zurück zum Zitat Wang, Y. S., & Lu, L. H. (2005). 5.7-GHz low-power variable gain LNA in 0.18-µm CMOS. Electronics Letters, 41(2), 66–68. CrossRef Wang, Y. S., & Lu, L. H. (2005). 5.7-GHz low-power variable gain LNA in 0.18-µm CMOS. Electronics Letters, 41(2), 66–68. CrossRef
19.
Zurück zum Zitat Shouxian, M., Guo, M., Seng, Y. K., & Anh, D. M. (2005). A modified architecture used for input matching in CMOS low-noise amplifiers. IEEE Transactions on Circuits Systems II, Express Briefs, 52(11), 784–788. CrossRef Shouxian, M., Guo, M., Seng, Y. K., & Anh, D. M. (2005). A modified architecture used for input matching in CMOS low-noise amplifiers. IEEE Transactions on Circuits Systems II, Express Briefs, 52(11), 784–788. CrossRef
20.
Zurück zum Zitat Jin, X., Ou, J., Chen, C. H., Liu, W., Deen, M. J., Gray, P. R., & Hu, C. (1998). An effective gate resistance model for CMOS RF and noise modeling. Digital Technology papers IEDM (pp. 961–964). Jin, X., Ou, J., Chen, C. H., Liu, W., Deen, M. J., Gray, P. R., & Hu, C. (1998). An effective gate resistance model for CMOS RF and noise modeling. Digital Technology papers IEDM (pp. 961–964).
21.
Zurück zum Zitat Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press. Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.
22.
Zurück zum Zitat Zhang, H., Fan, X., & Sinencio, E. S. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(2), 320–330. CrossRef Zhang, H., Fan, X., & Sinencio, E. S. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(2), 320–330. CrossRef
23.
Zurück zum Zitat Moezzi, M., & Sharif Bakhtiar, M. (2012). Wideband LNA using active inductor with multiple feed-forward noise reduction paths. IEEE Transactions on Microwave Theory and Technology, 60(4), 1069–1078. CrossRef Moezzi, M., & Sharif Bakhtiar, M. (2012). Wideband LNA using active inductor with multiple feed-forward noise reduction paths. IEEE Transactions on Microwave Theory and Technology, 60(4), 1069–1078. CrossRef
24.
Zurück zum Zitat Im, D., Nam, I., Kim, H., & Lee, K. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(3), 686–698. CrossRef Im, D., Nam, I., Kim, H., & Lee, K. (2009). A wideband CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE Journal of Solid-State Circuits, 44(3), 686–698. CrossRef
25.
Zurück zum Zitat Kim, N., Aparin, V., Barnett, K., & Persico, C. (2006). A cellular-band CDMA CMOS LNA linearized using active post-distortion. IEEE Journal of Solid-State Circuits, 41(7), 1530–1534. CrossRef Kim, N., Aparin, V., Barnett, K., & Persico, C. (2006). A cellular-band CDMA CMOS LNA linearized using active post-distortion. IEEE Journal of Solid-State Circuits, 41(7), 1530–1534. CrossRef
26.
Zurück zum Zitat Geddada, H. M., Park, J. W., & Martinez, J. S. (2009). Robust derivative superposition method for linearizing broadband LNAs. IEEE Electronics Letters, 45(9), 435–436. CrossRef Geddada, H. M., Park, J. W., & Martinez, J. S. (2009). Robust derivative superposition method for linearizing broadband LNAs. IEEE Electronics Letters, 45(9), 435–436. CrossRef
27.
Zurück zum Zitat Alavi-Rad, H., Ziabakhsh, S., Ziabakhsh, S., & Yagoub, M. C. E. (2013). A 0.9 V CMOS 3–5 GHz broadband flat gain low-noise amplifier for ultra-wide band receivers. Canadian Journal of Electrical Computer Engineering, 36(2), 87–91. CrossRef Alavi-Rad, H., Ziabakhsh, S., Ziabakhsh, S., & Yagoub, M. C. E. (2013). A 0.9 V CMOS 3–5 GHz broadband flat gain low-noise amplifier for ultra-wide band receivers. Canadian Journal of Electrical Computer Engineering, 36(2), 87–91. CrossRef
28.
Zurück zum Zitat Nouri, M., & Karimi, Gh. (2014). A novel 2.5–3.1 GHz wide-band low-noise amplifier in 0.18 µm CMOS. Wireless Personal Communications, 79(3), 1993–2003. CrossRef Nouri, M., & Karimi, Gh. (2014). A novel 2.5–3.1 GHz wide-band low-noise amplifier in 0.18 µm CMOS. Wireless Personal Communications, 79(3), 1993–2003. CrossRef
Metadaten
Titel
A 3–6 GHz Current Reused Noise Canceling Low Noise Amplifier for WLAN and WPAN Applications
verfasst von
Alireza Saberkari
V. Shirmohammadli
M. C. E. Yagoub
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-015-2993-y

Weitere Artikel der Ausgabe 3/2016

Wireless Personal Communications 3/2016 Zur Ausgabe