Skip to main content
Erschienen in: Computational Mechanics 1/2019

11.06.2018 | Original Paper

A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures

verfasst von: Y. X. Peng, A. M. Zhang, S. F. Li, F. R Ming

Erschienen in: Computational Mechanics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A beam formulation based on reproducing kernel particle method (RKPM) for the dynamic analysis of stiffened shell structures is presented in this paper. The kinematic description of a beam is obtained based on the Timoshenko beam theory. By using the principle of virtual power, the governing equations of a three-dimensional beam are derived. To obtain the numerical model of stiffened shell structures, two schemes are adopted: one is model stiffeners by the RKPM beam formulation, the other one is model the entire stiffened shell by the RKPM shell formulation. In the first scheme, the coupling model of RKPM shell and beam formulation is obtained by adding the corresponding quantities in their governing equations. In the second scheme, by determining the support domain of a stress point according to which component the stress point is located, the full shell simulation is achieved. The reliability and accuracy of those two schemes are verified by several numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cho S-R, Lee H-S (2009) Experimental and analytical investigations on the response of stiffened plates subjected to lateral collisions. Mar Struct 22(1):84–95CrossRef Cho S-R, Lee H-S (2009) Experimental and analytical investigations on the response of stiffened plates subjected to lateral collisions. Mar Struct 22(1):84–95CrossRef
2.
Zurück zum Zitat Li S, Liu WK (2007) Meshfree particle methods. Springer, BerlinMATH Li S, Liu WK (2007) Meshfree particle methods. Springer, BerlinMATH
3.
Zurück zum Zitat Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) \(\delta \)-sph model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13):1526–1542MathSciNetCrossRefMATH Marrone S, Antuono M, Colagrossi A, Colicchio G, Le Touzé D, Graziani G (2011) \(\delta \)-sph model for simulating violent impact flows. Comput Methods Appl Mech Eng 200(13):1526–1542MathSciNetCrossRefMATH
4.
Zurück zum Zitat Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate sph modeling of viscous flows around bodies at low and moderate reynolds numbers. J Comput Phys 245:456–475MathSciNetCrossRefMATH Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G (2013) An accurate sph modeling of viscous flows around bodies at low and moderate reynolds numbers. J Comput Phys 245:456–475MathSciNetCrossRefMATH
5.
Zurück zum Zitat Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetCrossRefMATH Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38(10):1655–1679MathSciNetCrossRefMATH
6.
Zurück zum Zitat Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25(2):102–116CrossRefMATH Li S, Hao W, Liu WK (2000) Numerical simulations of large deformation of thin shell structures using meshfree methods. Comput Mech 25(2):102–116CrossRefMATH
7.
Zurück zum Zitat Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343CrossRefMATH Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343CrossRefMATH
8.
Zurück zum Zitat Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81(1):48–71MathSciNetMATH Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81(1):48–71MathSciNetMATH
9.
Zurück zum Zitat Zhang LT, Wagner GJ, Liu WK (2003) Modelling and simulation of fluid structure interaction by meshfree and fem. Int J Numer Methods Biomed Eng 19(8):615–621MATH Zhang LT, Wagner GJ, Liu WK (2003) Modelling and simulation of fluid structure interaction by meshfree and fem. Int J Numer Methods Biomed Eng 19(8):615–621MATH
10.
Zurück zum Zitat Potapov S, Maurel B, Combescure A, Fabis J (2009) Modeling accidental-type fluid-structure interaction problems with the SPH method. Comput Struct 87(11):721–734CrossRef Potapov S, Maurel B, Combescure A, Fabis J (2009) Modeling accidental-type fluid-structure interaction problems with the SPH method. Comput Struct 87(11):721–734CrossRef
11.
Zurück zum Zitat Zhang Z, Wang L, Silberschmidt VV (2017) Damage response of steel plate to underwater explosion: effect of shaped charge liner. Int J Impact Eng 103:38–49CrossRef Zhang Z, Wang L, Silberschmidt VV (2017) Damage response of steel plate to underwater explosion: effect of shaped charge liner. Int J Impact Eng 103:38–49CrossRef
12.
Zurück zum Zitat Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free galerkin method. Int J Solids Struct 33(20–22):3057–3080CrossRefMATH Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free galerkin method. Int J Solids Struct 33(20–22):3057–3080CrossRefMATH
13.
Zurück zum Zitat Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Solids Struct 49(18):2373–2393CrossRef Ren B, Li S (2012) Modeling and simulation of large-scale ductile fracture in plates and shells. Int J Solids Struct 49(18):2373–2393CrossRef
14.
Zurück zum Zitat Maurel B, Combescure A (2008) An sph shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Methods Eng 76(7):949–971MathSciNetCrossRefMATH Maurel B, Combescure A (2008) An sph shell formulation for plasticity and fracture analysis in explicit dynamics. Int J Numer Methods Eng 76(7):949–971MathSciNetCrossRefMATH
15.
Zurück zum Zitat Donning BM, Liu WK (1998) Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152(1–2):47–71CrossRefMATH Donning BM, Liu WK (1998) Meshless methods for shear-deformable beams and plates. Comput Methods Appl Mech Eng 152(1–2):47–71CrossRefMATH
16.
Zurück zum Zitat Atluri S, Cho J, Kim H-G (1999) Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput Mech 24(5):334–347CrossRefMATH Atluri S, Cho J, Kim H-G (1999) Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations. Comput Mech 24(5):334–347CrossRefMATH
17.
Zurück zum Zitat Wang D, Chen J-S (2006) A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration. Comput Mech 39(1):83–90CrossRefMATH Wang D, Chen J-S (2006) A locking-free meshfree curved beam formulation with the stabilized conforming nodal integration. Comput Mech 39(1):83–90CrossRefMATH
18.
Zurück zum Zitat Simo JC (1985) A finite strain beam formulation. the three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49(1):55–70CrossRefMATH Simo JC (1985) A finite strain beam formulation. the three-dimensional dynamic problem. Part I. Comput Methods Appl Mech Eng 49(1):55–70CrossRefMATH
20.
Zurück zum Zitat Chen J-S, Pan C (1996) A pressure projection method for nearly incompressible rubber hyperelasticity, part I: theory. J Appl Mech 63(4):862–868CrossRefMATH Chen J-S, Pan C (1996) A pressure projection method for nearly incompressible rubber hyperelasticity, part I: theory. J Appl Mech 63(4):862–868CrossRefMATH
21.
Zurück zum Zitat Guan P, Chi S, Chen J, Slawson T, Roth M (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRef Guan P, Chi S, Chen J, Slawson T, Roth M (2011) Semi-lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38(12):1033–1047CrossRef
22.
Zurück zum Zitat Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH Belytschko T, Liu WK, Moran B, Elkhodary K (2013) Nonlinear finite elements for continua and structures. Wiley, New YorkMATH
23.
Zurück zum Zitat Günther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163(1–4):205–230MathSciNetCrossRefMATH Günther FC, Liu WK (1998) Implementation of boundary conditions for meshless methods. Comput Methods Appl Mech Eng 163(1–4):205–230MathSciNetCrossRefMATH
24.
Zurück zum Zitat Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155(3–4):273–305MathSciNetCrossRefMATH Betsch P, Menzel A, Stein E (1998) On the parametrization of finite rotations in computational mechanics: a classification of concepts with application to smooth shells. Comput Methods Appl Mech Eng 155(3–4):273–305MathSciNetCrossRefMATH
26.
Zurück zum Zitat Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227MathSciNetCrossRefMATH Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1–4):195–227MathSciNetCrossRefMATH
27.
Zurück zum Zitat Bathe K-J, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386CrossRefMATH Bathe K-J, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386CrossRefMATH
28.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, New York
29.
Zurück zum Zitat Holden J (1972) On the finite deflections of thin beams. Int J Solids Struct 8(8):1051–1055CrossRefMATH Holden J (1972) On the finite deflections of thin beams. Int J Solids Struct 8(8):1051–1055CrossRefMATH
30.
Zurück zum Zitat Liu WK, Belytschko T, Chen J-S (1988) Nonlinear versions of flexurally superconvergent elements. Comput Methods Appl Mech Eng 71(3):241–258CrossRefMATH Liu WK, Belytschko T, Chen J-S (1988) Nonlinear versions of flexurally superconvergent elements. Comput Methods Appl Mech Eng 71(3):241–258CrossRefMATH
31.
Zurück zum Zitat Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116CrossRefMATH Simo JC, Vu-Quoc L (1986) A three-dimensional finite-strain rod model. Part II: computational aspects. Comput Methods Appl Mech Eng 58(1):79–116CrossRefMATH
32.
Zurück zum Zitat Crisfield MA (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng 81(2):131–150CrossRefMATH Crisfield MA (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Methods Appl Mech Eng 81(2):131–150CrossRefMATH
33.
Zurück zum Zitat Bathe K-J, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14(7):961–986CrossRefMATH Bathe K-J, Bolourchi S (1979) Large displacement analysis of three-dimensional beam structures. Int J Numer Methods Eng 14(7):961–986CrossRefMATH
Metadaten
Titel
A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures
verfasst von
Y. X. Peng
A. M. Zhang
S. F. Li
F. R Ming
Publikationsdatum
11.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1583-8

Weitere Artikel der Ausgabe 1/2019

Computational Mechanics 1/2019 Zur Ausgabe

Neuer Inhalt