Skip to main content
Erschienen in: Journal of Materials Science 20/2017

30.05.2017 | Mechanochemical Synthesis

A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride

verfasst von: Ihor Hlova, Jennifer F. Goldston, Shalabh Gupta, Takeshi Kobayashi, Marek Pruski, Vitalij K. Pecharsky

Erschienen in: Journal of Materials Science | Ausgabe 20/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solid-state mechanochemical synthesis of alane (AlH3) starting from sodium hydride (NaH) and aluminum chloride (AlCl3) has been achieved at room temperature. The transformation pathway of this solid-state reaction was controlled by a stepwise addition of AlCl3 to the initial reaction mixture that contained sodium hydride in excess of stoichiometric amount. As in the case of previously investigated LiH–AlCl3 system, complete selectivity was achieved whereby formation of unwanted elemental aluminum was fully suppressed, and AlH3 was obtained in quantitative yield. Reaction progress during each step was investigated by means of solid-state NMR and powder X-ray diffraction, which revealed that the overall reaction proceeds through a series of intermediate alanates that may be partially chlorinated. The NaH–AlCl3 system presents some subtle differences compared to LiH–AlCl3 system particularly with respect to optimal concentrations needed during one of the reaction stages. Based on the results, we postulate that high local concentrations of NaH may stabilize chlorine-containing derivatives and prevent decomposition into elemental aluminum with hydrogen evolution. Complete conversion with quantitative yield of alane was confirmed by both SSNMR and hydrogen desorption analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrogen Energy 39(16):8482–8494CrossRef Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Galluzzo GR (2014) Perspective on hydrogen energy carrier and its automotive applications. Int J Hydrogen Energy 39(16):8482–8494CrossRef
2.
Zurück zum Zitat McWhorter S, Read C, Ordaz G, Stetson N (2011) Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells. Curr Opin Solid State Mater Sci 15(2):29–38CrossRef McWhorter S, Read C, Ordaz G, Stetson N (2011) Materials-based hydrogen storage: attributes for near-term, early market PEM fuel cells. Curr Opin Solid State Mater Sci 15(2):29–38CrossRef
4.
Zurück zum Zitat Brooks KP, Semelsberger TA, Simmons KL, van Hassel B (2014) Slurry-based chemical hydrogen storage systems for automotive fuel cell applications. J Power Sources 268:950–959CrossRef Brooks KP, Semelsberger TA, Simmons KL, van Hassel B (2014) Slurry-based chemical hydrogen storage systems for automotive fuel cell applications. J Power Sources 268:950–959CrossRef
5.
Zurück zum Zitat Klebanoff L, Keller J (2012) Final report for the DOE metal hydride center of excellence. Sandia National Laboratories, Albuquerque, NM, Report No. SAND2012-0786 Klebanoff L, Keller J (2012) Final report for the DOE metal hydride center of excellence. Sandia National Laboratories, Albuquerque, NM, Report No. SAND2012-0786
6.
Zurück zum Zitat Graetz J, Reilly JJ, Yartys VA, Maehlen JP, Bulychev BM, Antonov VE, Tarasov BP, Gabis IE (2011) Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd 509:S517–S528CrossRef Graetz J, Reilly JJ, Yartys VA, Maehlen JP, Bulychev BM, Antonov VE, Tarasov BP, Gabis IE (2011) Aluminum hydride as a hydrogen and energy storage material: past, present and future. J Alloys Compd 509:S517–S528CrossRef
8.
Zurück zum Zitat Wang L-L, Herwadkar A, Reich JM, Johnson DD, House SD, Pena-Martin P, Rockett AA, Robertson IM, Gupta S, Pecharsky VK (2016) Towards direct synthesis of alane: a predicted defect-mediated pathway confirmed experimentally. Chemsuschem 9(17):2358–2364CrossRef Wang L-L, Herwadkar A, Reich JM, Johnson DD, House SD, Pena-Martin P, Rockett AA, Robertson IM, Gupta S, Pecharsky VK (2016) Towards direct synthesis of alane: a predicted defect-mediated pathway confirmed experimentally. Chemsuschem 9(17):2358–2364CrossRef
9.
Zurück zum Zitat Brower FM, Matzek NE, Reigler PF, Rinn HW, Roberts CB, Schmidt DL, Snover JA, Terada K (1976) Preparation and properties of aluminum hydride. J Am Chem Soc 98(9):2450–2453CrossRef Brower FM, Matzek NE, Reigler PF, Rinn HW, Roberts CB, Schmidt DL, Snover JA, Terada K (1976) Preparation and properties of aluminum hydride. J Am Chem Soc 98(9):2450–2453CrossRef
10.
Zurück zum Zitat Finholt AE, Bond AC Jr, Schlesinger HI (1947) Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry. J Am Chem Soc 69(5):1199–1203CrossRef Finholt AE, Bond AC Jr, Schlesinger HI (1947) Lithium aluminum hydride, aluminum hydride and lithium gallium hydride, and some of their applications in organic and inorganic chemistry. J Am Chem Soc 69(5):1199–1203CrossRef
11.
Zurück zum Zitat Sinke GC, Walker LC, Oetting FL, Stull DR (1967) Thermodynamic properties of aluminum hydride. J Chem Phys 47(8):2759–2761CrossRef Sinke GC, Walker LC, Oetting FL, Stull DR (1967) Thermodynamic properties of aluminum hydride. J Chem Phys 47(8):2759–2761CrossRef
12.
Zurück zum Zitat Chizinsky G, Evans GG, Gibb TR Jr, Rice MJ Jr (1955) Non-solvated aluminum hydride. J Am Chem Soc 77(11):3164–3165CrossRef Chizinsky G, Evans GG, Gibb TR Jr, Rice MJ Jr (1955) Non-solvated aluminum hydride. J Am Chem Soc 77(11):3164–3165CrossRef
13.
Zurück zum Zitat Matzek N, Musinski D (1974) Aluminum hydride in hexagonal or rhombohedral crystalline form. U.S. Patent No. 3,819,819 Matzek N, Musinski D (1974) Aluminum hydride in hexagonal or rhombohedral crystalline form. U.S. Patent No. 3,819,819
15.
Zurück zum Zitat Klemm A, Hartmann G, Lange L (2012) Sodium and sodium alloys. Ullmann’s Encyclopedia of Industrial Chemistry Klemm A, Hartmann G, Lange L (2012) Sodium and sodium alloys. Ullmann’s Encyclopedia of Industrial Chemistry
16.
Zurück zum Zitat Kraus T, Scardera M (1974) Preparation of AlH3 via NaAlH4–AlH3 in ether-toluene. U.S. Patent No. 3,857,930 Kraus T, Scardera M (1974) Preparation of AlH3 via NaAlH4–AlH3 in ether-toluene. U.S. Patent No. 3,857,930
17.
Zurück zum Zitat Ashby E, Taylor W, Winkler D (1974) Aluminum hydride product. U.S. Patent No. 3,829,390 Ashby E, Taylor W, Winkler D (1974) Aluminum hydride product. U.S. Patent No. 3,829,390
18.
Zurück zum Zitat Bulychev BM, Verbetskii VN, Storozhenko PA (2008) “Direct” synthesis of unsolvated aluminum hydride involving Lewis and Bronsted acids. Russ J Inorg Chem 53(7):1000–1005CrossRef Bulychev BM, Verbetskii VN, Storozhenko PA (2008) “Direct” synthesis of unsolvated aluminum hydride involving Lewis and Bronsted acids. Russ J Inorg Chem 53(7):1000–1005CrossRef
19.
Zurück zum Zitat Dinh LV, Knight DA, Paskevicius M, Buckley CE, Zidan R (2012) Novel methods for synthesizing halide-free alane without the formation of adducts. Appl Phys A 107(1):173–181CrossRef Dinh LV, Knight DA, Paskevicius M, Buckley CE, Zidan R (2012) Novel methods for synthesizing halide-free alane without the formation of adducts. Appl Phys A 107(1):173–181CrossRef
20.
Zurück zum Zitat Duan C, Hu L, Sun Y, Zhou H, Yu H (2015) An insight into the process and mechanism of a mechanically activated reaction for synthesizing AlH3 nano-composites. Dalton T 44(37):16251–16255CrossRef Duan C, Hu L, Sun Y, Zhou H, Yu H (2015) An insight into the process and mechanism of a mechanically activated reaction for synthesizing AlH3 nano-composites. Dalton T 44(37):16251–16255CrossRef
21.
Zurück zum Zitat Hlova IZ, Gupta S, Goldston JF, Kobayashi T, Pruski M, Pecharsky VK (2014) Dry mechanochemical synthesis of alane from LiH and AlCl3. Faraday Discuss 170:137–153CrossRef Hlova IZ, Gupta S, Goldston JF, Kobayashi T, Pruski M, Pecharsky VK (2014) Dry mechanochemical synthesis of alane from LiH and AlCl3. Faraday Discuss 170:137–153CrossRef
22.
Zurück zum Zitat Gupta S, Kobayashi T, Hlova IZ, Goldston JF, Pruski M, Pecharsky VK (2014) Solvent-free mechanochemical synthesis of alane, AlH3: effect of pressure on the reaction pathway. Green Chem 16(9):4378–4388CrossRef Gupta S, Kobayashi T, Hlova IZ, Goldston JF, Pruski M, Pecharsky VK (2014) Solvent-free mechanochemical synthesis of alane, AlH3: effect of pressure on the reaction pathway. Green Chem 16(9):4378–4388CrossRef
23.
Zurück zum Zitat Brinks HW, Istad-Lem A, Hauback BC (2006) Mechanochemical synthesis and crystal structure of α’-AlD3 and α-AlD3. J Phys Chem B 110(51):25833–25837CrossRef Brinks HW, Istad-Lem A, Hauback BC (2006) Mechanochemical synthesis and crystal structure of α’-AlD3 and α-AlD3. J Phys Chem B 110(51):25833–25837CrossRef
24.
Zurück zum Zitat Paskevicius M, Sheppard DA, Buckley CE (2009) Characterization of mechanochemically synthesized alane (AlH3) nanoparticles. J Alloys Compd 487(1):370–376CrossRef Paskevicius M, Sheppard DA, Buckley CE (2009) Characterization of mechanochemically synthesized alane (AlH3) nanoparticles. J Alloys Compd 487(1):370–376CrossRef
25.
Zurück zum Zitat Wiench JW, Balema VP, Pecharsky VK, Pruski M (2004) Solid-state 27Al NMR investigation of thermal decomposition of LiAlH4. J Solid State Chem 177(3):648–653CrossRef Wiench JW, Balema VP, Pecharsky VK, Pruski M (2004) Solid-state 27Al NMR investigation of thermal decomposition of LiAlH4. J Solid State Chem 177(3):648–653CrossRef
26.
Zurück zum Zitat Freude ED, Haase J (1993) Quadrupole effects in solid-state nuclear magnetic resonance. NMR-Basic Princ Prog 29:1–90CrossRef Freude ED, Haase J (1993) Quadrupole effects in solid-state nuclear magnetic resonance. NMR-Basic Princ Prog 29:1–90CrossRef
27.
Zurück zum Zitat Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958CrossRef Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958CrossRef
28.
Zurück zum Zitat Harris RK, Becker ED, Cabral De Menezes SM, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84CrossRef Harris RK, Becker ED, Cabral De Menezes SM, Granger P, Hoffman RE, Zilm KW (2008) Further conventions for NMR shielding and chemical shifts (IUPAC recommendations 2008). Pure Appl Chem 80:59–84CrossRef
29.
Zurück zum Zitat The International Center for Diffraction Data (2014) PDF-00-005-0628 The International Center for Diffraction Data (2014) PDF-00-005-0628
30.
Zurück zum Zitat The International Center for Diffraction Data (2014) PDF-00-023-0649 The International Center for Diffraction Data (2014) PDF-00-023-0649
31.
Zurück zum Zitat Baenziger NC (1951) The crystal structure of NaAlCl4. Acta Crystallogr 4(3):216–219CrossRef Baenziger NC (1951) The crystal structure of NaAlCl4. Acta Crystallogr 4(3):216–219CrossRef
32.
Zurück zum Zitat The International Center for Diffraction Data (2014) PDF-00-054-0409 The International Center for Diffraction Data (2014) PDF-00-054-0409
33.
Zurück zum Zitat The International Center for Diffraction Data (2014) PDF-00-022-0010 The International Center for Diffraction Data (2014) PDF-00-022-0010
34.
Zurück zum Zitat The International Center for Diffraction Data (2014) PDF-00-022-1337 The International Center for Diffraction Data (2014) PDF-00-022-1337
35.
Zurück zum Zitat The International Center for Diffraction Data (2014) PDF-00-042-0786 The International Center for Diffraction Data (2014) PDF-00-042-0786
36.
Zurück zum Zitat Huot J, Boily S, Güther V, Schulz R (1999) Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying. J Alloys Compd 283(1–2):304–306CrossRef Huot J, Boily S, Güther V, Schulz R (1999) Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying. J Alloys Compd 283(1–2):304–306CrossRef
37.
Zurück zum Zitat Singh NK, Kobayashi T, Dolotko O, Wiench JW, Pruski M, Pecharsky VK (2012) Mechanochemical transformations in NaNH2–MgH2 mixtures. J Alloys Compd 513:324–327CrossRef Singh NK, Kobayashi T, Dolotko O, Wiench JW, Pruski M, Pecharsky VK (2012) Mechanochemical transformations in NaNH2–MgH2 mixtures. J Alloys Compd 513:324–327CrossRef
38.
Zurück zum Zitat Dolotko O, Zhang H, Ugurlu O, Wiench JW, Pruski M, Chumbley LS, Pecharsky VK (2007) Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems. Acta Mater 55(9):3121–3130CrossRef Dolotko O, Zhang H, Ugurlu O, Wiench JW, Pruski M, Chumbley LS, Pecharsky VK (2007) Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems. Acta Mater 55(9):3121–3130CrossRef
39.
Zurück zum Zitat Bowman RC, Hwang JC (2006) Nuclear magnetic resonance studies of hydrogen storage materials. Mater Matter 2(2):29–31 Bowman RC, Hwang JC (2006) Nuclear magnetic resonance studies of hydrogen storage materials. Mater Matter 2(2):29–31
40.
Zurück zum Zitat Humphries TD, Munroe KT, DeWinter TM, Jensen CM, McGrady GS (2013) NMR spectroscopic and thermodynamic studies of the etherate and the α, α′, and γ phases of AlH3. Int J Hydrogen Energy 38(11):4577–4586CrossRef Humphries TD, Munroe KT, DeWinter TM, Jensen CM, McGrady GS (2013) NMR spectroscopic and thermodynamic studies of the etherate and the α, α′, and γ phases of AlH3. Int J Hydrogen Energy 38(11):4577–4586CrossRef
41.
Zurück zum Zitat Gupta S, Pecharsky VK, Kobayashi T, Pruski M, Hlova I (2015) Mechanochemical synthesis of alane PCT application WO2015123438 A1 Gupta S, Pecharsky VK, Kobayashi T, Pruski M, Hlova I (2015) Mechanochemical synthesis of alane PCT application WO2015123438 A1
42.
Zurück zum Zitat Sartori S, Istad-Lem A, Brinks HW, Hauback BC (2009) Mechanochemical synthesis of alane. Int J Hydrogen Energy 34(15):6350–6356CrossRef Sartori S, Istad-Lem A, Brinks HW, Hauback BC (2009) Mechanochemical synthesis of alane. Int J Hydrogen Energy 34(15):6350–6356CrossRef
43.
Zurück zum Zitat Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34(22):9151–9156CrossRef Beattie SD, McGrady GS (2009) Hydrogen desorption studies of NaAlH4 and LiAlH4 by in situ heating in an ESEM. Int J Hydrogen Energy 34(22):9151–9156CrossRef
44.
Zurück zum Zitat Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Alloys Compd 298(1):125–134CrossRef Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Alloys Compd 298(1):125–134CrossRef
45.
Zurück zum Zitat Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer Science & Business Media, New YorkCrossRef Varin RA, Czujko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Springer Science & Business Media, New YorkCrossRef
46.
Zurück zum Zitat Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J (2005) Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. J Appl Phys A 80(4):687–690CrossRef Sandrock G, Reilly J, Graetz J, Zhou WM, Johnson J, Wegrzyn J (2005) Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles. J Appl Phys A 80(4):687–690CrossRef
47.
Zurück zum Zitat Mikheeva VI, Fedneva EM, Shnitkova ZL (1956) The reaction between aluminum chloride and lithium hydride in organic solvents. Zh Neorg Khim 1(11):8–19 Mikheeva VI, Fedneva EM, Shnitkova ZL (1956) The reaction between aluminum chloride and lithium hydride in organic solvents. Zh Neorg Khim 1(11):8–19
Metadaten
Titel
A benign synthesis of alane by the composition-controlled mechanochemical reaction of sodium hydride and aluminum chloride
verfasst von
Ihor Hlova
Jennifer F. Goldston
Shalabh Gupta
Takeshi Kobayashi
Marek Pruski
Vitalij K. Pecharsky
Publikationsdatum
30.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 20/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1219-y

Weitere Artikel der Ausgabe 20/2017

Journal of Materials Science 20/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.