Skip to main content
Erschienen in: Neural Computing and Applications 17/2020

28.01.2020 | Original Article

A biologically plausible network model for pattern storage and recall inspired by Dentate Gyrus

verfasst von: V. Vidya Janarthanam, S. Vishwanath, A. P. Shanthi

Erschienen in: Neural Computing and Applications | Ausgabe 17/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the race to achieve better performance, artificial intelligence has become more about the end rather than the means, which is general intelligence. This work aims to bridge the gap between the two by finding a complementary midline. The objective of this work is to project the role of Dentate Gyrus in enhancing the performance of an autoassociative network, paving the way to develop a biologically plausible neural network which, in the future, would help in simulating the network present in our brain. The proposed network imbibes biological similarities with respect to connectivity, weight updation, and activation function. Dentate Gyrus uses pre-integration lateral inhibition form of learning, and the autoassociative network is implemented using Hopfield network. The performance of the autoassociative network in the presence and absence of Dentate Gyrus is observed across multiple parameters. The results show an increase of 38% in storage capacity and a decrease of 15% in the error tolerance capability of the network in the presence of Dentate Gyrus.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Amit DJ (1989) Modeling brain function—the world of attractor neural networks. Cambridge University Press, New YorkCrossRef Amit DJ (1989) Modeling brain function—the world of attractor neural networks. Cambridge University Press, New YorkCrossRef
3.
Zurück zum Zitat Babadi B, Sompolinsky H (2014) Sparseness and expansion in sensory representations. Neuron 83(5):1213–1226CrossRef Babadi B, Sompolinsky H (2014) Sparseness and expansion in sensory representations. Neuron 83(5):1213–1226CrossRef
5.
Zurück zum Zitat Chattarji S, Stanton PK, Sejnowski TJ (1989) Commissural synapses, but not mossy fiber synapses, in hippocampal field CA3 exhibit associative long-term potentiation and depression. Brain Res 495(1):145–150CrossRef Chattarji S, Stanton PK, Sejnowski TJ (1989) Commissural synapses, but not mossy fiber synapses, in hippocampal field CA3 exhibit associative long-term potentiation and depression. Brain Res 495(1):145–150CrossRef
6.
Zurück zum Zitat Crochet S, Poulet JF, Kremer Y, Petersen CC (2011) Synaptic mechanisms underlying sparse coding of active touch. Neuron 69(6):1160–1175CrossRef Crochet S, Poulet JF, Kremer Y, Petersen CC (2011) Synaptic mechanisms underlying sparse coding of active touch. Neuron 69(6):1160–1175CrossRef
7.
Zurück zum Zitat Cullen DK, Gilroy ME, Irons HR, LaPlaca MC (2010) Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures. Brain Res 1359:44–55CrossRef Cullen DK, Gilroy ME, Irons HR, LaPlaca MC (2010) Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures. Brain Res 1359:44–55CrossRef
8.
Zurück zum Zitat Fausett L (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, Inc, Upper Saddle RiverMATH Fausett L (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall, Inc, Upper Saddle RiverMATH
9.
Zurück zum Zitat Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley/Addison Wesley Longman, Reading Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley/Addison Wesley Longman, Reading
10.
Zurück zum Zitat Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the drosophila mushroom body. J Neurosci 31(33):11772–11785CrossRef Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the drosophila mushroom body. J Neurosci 31(33):11772–11785CrossRef
11.
Zurück zum Zitat Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148(3):574–591CrossRef Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148(3):574–591CrossRef
12.
Zurück zum Zitat Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a hebbian rule. J Neurophysiol 64(3):948–960CrossRef Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a hebbian rule. J Neurophysiol 64(3):948–960CrossRef
13.
Zurück zum Zitat Levy WB, Hocking AB, Wu X (2005) Interpreting hippocampal function as recoding and forecasting. Neural Netw 18(9):1242–1264CrossRef Levy WB, Hocking AB, Wu X (2005) Interpreting hippocampal function as recoding and forecasting. Neural Netw 18(9):1242–1264CrossRef
14.
Zurück zum Zitat Lin AC, Bygrave AM, De Calignon A, Lee T, Miesenböck G (2014) Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci 17(4):559CrossRef Lin AC, Bygrave AM, De Calignon A, Lee T, Miesenböck G (2014) Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci 17(4):559CrossRef
16.
Zurück zum Zitat Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B 262:23–81CrossRef Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc Lond Ser B 262:23–81CrossRef
17.
Zurück zum Zitat Menezes R, Monteiro L (2011) Synaptic compensation on hopfield network: implications for memory rehabilitation. Neural Comput Appl 20(5):753–757CrossRef Menezes R, Monteiro L (2011) Synaptic compensation on hopfield network: implications for memory rehabilitation. Neural Comput Appl 20(5):753–757CrossRef
18.
Zurück zum Zitat Neunuebel JP, Knierim JJ (2014) CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and Dentate Gyrus pattern separation. Neuron 81(2):416–427CrossRef Neunuebel JP, Knierim JJ (2014) CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and Dentate Gyrus pattern separation. Neuron 81(2):416–427CrossRef
19.
Zurück zum Zitat Nitz D, McNaughton B (2004) Differential modulation of CA1 and Dentate Gyrus interneurons during exploration of novel environments. J Neurophysiol 91(2):863–872CrossRef Nitz D, McNaughton B (2004) Differential modulation of CA1 and Dentate Gyrus interneurons during exploration of novel environments. J Neurophysiol 91(2):863–872CrossRef
21.
Zurück zum Zitat Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14(4):481–487CrossRef Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14(4):481–487CrossRef
22.
Zurück zum Zitat Palm G (1989) On the asymptotic information storage capacity of neural networks. In: Eckmiller R, v.d. Malsburg C (eds) Neural computers, vol 41. Springer, Berlin, Heidelberg, pp 271–280CrossRef Palm G (1989) On the asymptotic information storage capacity of neural networks. In: Eckmiller R, v.d. Malsburg C (eds) Neural computers, vol 41. Springer, Berlin, Heidelberg, pp 271–280CrossRef
23.
Zurück zum Zitat Palm G (2013) Neural associative memories and sparse coding. Neural Netw 37:165–171CrossRef Palm G (2013) Neural associative memories and sparse coding. Neural Netw 37:165–171CrossRef
25.
Zurück zum Zitat Quiroga RQ, Panzeri S (2013) Principles of neural coding. CRC Press, Boca RatonCrossRef Quiroga RQ, Panzeri S (2013) Principles of neural coding. CRC Press, Boca RatonCrossRef
26.
Zurück zum Zitat Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I, Gallant JL, Lu H, Vanduffel W (2012) Toward a unified theory of visual area V4. Neuron 74(1):12–29CrossRef Roe AW, Chelazzi L, Connor CE, Conway BR, Fujita I, Gallant JL, Lu H, Vanduffel W (2012) Toward a unified theory of visual area V4. Neuron 74(1):12–29CrossRef
27.
Zurück zum Zitat Rolls E (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74CrossRef Rolls E (2013) The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci 7:74CrossRef
28.
Zurück zum Zitat Rolls ET (2016a) Cerebral cortex: principles of operation. Oxford University Press, OxfordCrossRef Rolls ET (2016a) Cerebral cortex: principles of operation. Oxford University Press, OxfordCrossRef
29.
Zurück zum Zitat Rolls ET (2016b) Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol Learn Mem 129:4–28CrossRef Rolls ET (2016b) Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiol Learn Mem 129:4–28CrossRef
30.
Zurück zum Zitat Rolls ET, Treves A, Foster D, Perez-Vicente C (1997) Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Netw 10(9):1559–1569CrossRef Rolls ET, Treves A, Foster D, Perez-Vicente C (1997) Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Netw 10(9):1559–1569CrossRef
31.
Zurück zum Zitat Šimić G, Kostović I, Winblad B, Bogdanović N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and alzheimer’s disease. J Comp Neurol 379(4):482–494CrossRef Šimić G, Kostović I, Winblad B, Bogdanović N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and alzheimer’s disease. J Comp Neurol 379(4):482–494CrossRef
32.
Zurück zum Zitat Spratling MW, Johnson M (2002) Preintegration lateral inhibition enhances unsupervised learning. Neural Comput 14(9):2157–2179CrossRef Spratling MW, Johnson M (2002) Preintegration lateral inhibition enhances unsupervised learning. Neural Comput 14(9):2157–2179CrossRef
33.
Zurück zum Zitat Spratling MW, Johnson M (2004) Neural coding strategies and mechanisms of competition. Cognit Syst Res 5(2):93–117CrossRef Spratling MW, Johnson M (2004) Neural coding strategies and mechanisms of competition. Cognit Syst Res 5(2):93–117CrossRef
34.
Zurück zum Zitat Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2(2):189–199CrossRef Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2(2):189–199CrossRef
35.
Zurück zum Zitat Tung W, Quek C (2007) A brain-inspired fuzzy semantic memory model for learning and reasoning with uncertainty. Neural Comput Appl 16(6):559–569CrossRef Tung W, Quek C (2007) A brain-inspired fuzzy semantic memory model for learning and reasoning with uncertainty. Neural Comput Appl 16(6):559–569CrossRef
36.
Zurück zum Zitat Urban NN, Barrionuevo G (1996) Induction of hebbian and non-hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J Neurosci 16(13):4293–4299CrossRef Urban NN, Barrionuevo G (1996) Induction of hebbian and non-hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J Neurosci 16(13):4293–4299CrossRef
37.
Zurück zum Zitat Urban NN, Henze DA, Barrionuevo G (2001) Revisiting the role of the hippocampal mossy fiber synapse. Hippocampus 11(4):408–417CrossRef Urban NN, Henze DA, Barrionuevo G (2001) Revisiting the role of the hippocampal mossy fiber synapse. Hippocampus 11(4):408–417CrossRef
38.
Zurück zum Zitat Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276CrossRef Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456):1273–1276CrossRef
39.
Zurück zum Zitat West MJ, Slomianka L (1998) Total number of neurons in the layers of the human entorhinal cortex. Hippocampus 8(1):69–82CrossRef West MJ, Slomianka L (1998) Total number of neurons in the layers of the human entorhinal cortex. Hippocampus 8(1):69–82CrossRef
40.
Zurück zum Zitat Willshaw DJ, Buckingham J (1990) An assessment of marr’s theory of the hippocampus as a temporary memory store. Philos Trans R Soc Lond B 329(1253):205–215CrossRef Willshaw DJ, Buckingham J (1990) An assessment of marr’s theory of the hippocampus as a temporary memory store. Philos Trans R Soc Lond B 329(1253):205–215CrossRef
41.
Zurück zum Zitat Witter MP (2007) Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn Mem 14(11):705–713CrossRef Witter MP (2007) Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. Learn Mem 14(11):705–713CrossRef
Metadaten
Titel
A biologically plausible network model for pattern storage and recall inspired by Dentate Gyrus
verfasst von
V. Vidya Janarthanam
S. Vishwanath
A. P. Shanthi
Publikationsdatum
28.01.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 17/2020
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04670-3

Weitere Artikel der Ausgabe 17/2020

Neural Computing and Applications 17/2020 Zur Ausgabe