Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2021

09.04.2021 | ORIGINAL ARTICLE

A carbon efficiency approach for laser welding environmental performance assessment and the process parameters decision-making

verfasst von: Zhuo Huang, Huajun Cao, Dan Zeng, Weiwei Ge, Chengmao Duan

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a new generation of manufacturing technology, laser welding is widely applied in the fields of automobile, aerospace, etc. with its compelling advantages of high flexibility, quality, and energy density. However, the environmental performance of the laser welding process is not clear so far. There is a lack of systematic analysis of the laser welding process that takes all the energy sources and material consumption into consideration to reflect the actual environmental impact and evaluate the process parameter for decision-making. In this study, a parameterized model linking the carbon emissions and laser welding parameters is established. Based on this, a carbon efficiency evaluation approach is proposed to reveal the trade-off between carbon emissions and the added manufacturing value for decision-making on the premise of ensuring the welding quality. To verify the effectiveness of this approach, the carbon efficiency of the laser butt joint welding process is analyzed as an illustration. The results show that the parametric carbon emission models offer a feasible evaluation of carbon emissions of the laser welding process, with an accuracy of approximately 93.6%. The carbon emissions of the cooling system are 1.78 times that of laser devices. Thus, it dominates the carbon emissions of the laser welding process rather than laser devices. While ensuring the processing quality, increasing the welding speed is the most key way to improve carbon efficiency. The reason for it is that the carbon emissions of auxiliary facilities, e.g., cooling system can be reduced significantly as the reduced welding time. Furthermore, the standby time used, e.g., clamping and taking-off of workpieces, etc., is another key factor affecting the carbon efficiency. Thus, shortening the standby time can also improve the carbon efficiency of the laser welding process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat International Energy Agency (2018) Energy efficiency 2018. IEA, Paris International Energy Agency (2018) Energy efficiency 2018. IEA, Paris
3.
Zurück zum Zitat Ma F, Zhang H, Hon KKB, Gong Q (2018) An optimization approach of selective laser sintering considering energy consumption and material cost. J Clean Prod 199:529–537 Ma F, Zhang H, Hon KKB, Gong Q (2018) An optimization approach of selective laser sintering considering energy consumption and material cost. J Clean Prod 199:529–537
4.
Zurück zum Zitat Wei H, Zhang Y, Tan L, Zhong Z (2015) Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption. J Clean Prod 87:255–262 Wei H, Zhang Y, Tan L, Zhong Z (2015) Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption. J Clean Prod 87:255–262
5.
Zurück zum Zitat Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum-lithium alloys. Journal of Manufacturing Processes 16(2):166–175 Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum-lithium alloys. Journal of Manufacturing Processes 16(2):166–175
6.
Zurück zum Zitat Kaierle S, Dahmen M, Güdükkurt O (2011) Eco-efficiency of laser welding applications. SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future. Strasbourg, France, 8065:80650 Kaierle S, Dahmen M, Güdükkurt O (2011) Eco-efficiency of laser welding applications. SPIE Eco-Photonics 2011: Sustainable Design, Manufacturing, and Engineering Workforce Education for a Green Future. Strasbourg, France, 8065:80650
7.
Zurück zum Zitat Dahmen M, Güdükkurt O, Kaierle S (2010) The ecological footprint of laser beam welding. Phys Procedia 5:19–28 Dahmen M, Güdükkurt O, Kaierle S (2010) The ecological footprint of laser beam welding. Phys Procedia 5:19–28
8.
Zurück zum Zitat Kellens K, Rodrigues GC, Dewulf W, Duflou JR (2014) Energy and resource efficiency of laser cutting processes. Phys Procedia 56:854–858 Kellens K, Rodrigues GC, Dewulf W, Duflou JR (2014) Energy and resource efficiency of laser cutting processes. Phys Procedia 56:854–858
9.
Zurück zum Zitat Apostolos F, Konstantions S, George C (2009) Energy efficiency of laser based manufacturing processes. Proceedings of the ICALEO 2009 28th International Congress on Applications of Lasers and Electro-optics. Orlando, FL, USA, 1525–1531 Apostolos F, Konstantions S, George C (2009) Energy efficiency of laser based manufacturing processes. Proceedings of the ICALEO 2009 28th International Congress on Applications of Lasers and Electro-optics. Orlando, FL, USA, 1525–1531
10.
Zurück zum Zitat Apostolos F, Panagiotis S, Konstantions S, George C (2012) Energy efficiency assessment of laser drilling process. Phys Procedia 39:776–783 Apostolos F, Panagiotis S, Konstantions S, George C (2012) Energy efficiency assessment of laser drilling process. Phys Procedia 39:776–783
11.
Zurück zum Zitat Pastras G, Fysikopoulos A, Chryssolouris G (2017) A numerical approach to the energy efficiency of laser welding. Int J Adv Manuf Technol 92:1243–1253 Pastras G, Fysikopoulos A, Chryssolouris G (2017) A numerical approach to the energy efficiency of laser welding. Int J Adv Manuf Technol 92:1243–1253
12.
Zurück zum Zitat Daub R, Wiedenmann R, Mahrle A, Duong J, Zaeh MF (2010) Influence on the efficiency of the heat conduction mode laser beam welding process regarding different laser spot geometries. International Congress on Applications of Lasers & Electro-optics (ICALEO). Anaheim Kalifornien, USA 200:200–208 Daub R, Wiedenmann R, Mahrle A, Duong J, Zaeh MF (2010) Influence on the efficiency of the heat conduction mode laser beam welding process regarding different laser spot geometries. International Congress on Applications of Lasers & Electro-optics (ICALEO). Anaheim Kalifornien, USA 200:200–208
13.
Zurück zum Zitat Um J, Stroud IA (2013) Total energy estimation model for remote laser welding process. procedia CIRP 7:658–663 Um J, Stroud IA (2013) Total energy estimation model for remote laser welding process. procedia CIRP 7:658–663
14.
Zurück zum Zitat Li Y, Nicole K, Jan CA (2018) An energy model of machine tools for selective laser melting. Procedia CIRP 78:67–72 Li Y, Nicole K, Jan CA (2018) An energy model of machine tools for selective laser melting. Procedia CIRP 78:67–72
15.
Zurück zum Zitat Yilbas BS, Shauka MM, Afzal AA, Ashraf F (2020) Life cycle analysis for laser welding of alloys. Opt Laser Technol 126:1–7 Yilbas BS, Shauka MM, Afzal AA, Ashraf F (2020) Life cycle analysis for laser welding of alloys. Opt Laser Technol 126:1–7
16.
Zurück zum Zitat Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53 Sproesser G, Chang YJ, Pittner A, Finkbeiner M, Rethmeier M (2015) Life cycle assessment of welding technologies for thick metal plate welds. J Clean Prod 108:46–53
17.
Zurück zum Zitat Sangwan KS, Herrmann C, Pa E, Bhakar V, Singer J (2016) Life cycle assessment of arc welding and gas welding processes. Procedia CIRP 48:62–67 Sangwan KS, Herrmann C, Pa E, Bhakar V, Singer J (2016) Life cycle assessment of arc welding and gas welding processes. Procedia CIRP 48:62–67
18.
Zurück zum Zitat International Organization for Standardization (2017) ISO 14955-1:2017 Machine tools — environmental evaluation of machine tools — Part 1: design methodology for energy-efficient machine tools. ISO, Geneva International Organization for Standardization (2017) ISO 14955-1:2017 Machine tools — environmental evaluation of machine tools — Part 1: design methodology for energy-efficient machine tools. ISO, Geneva
19.
Zurück zum Zitat Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. In ASME international mechanical engineering congress and RD&D exposition. Anaheim, California, USA, 1–10 Dahmus JB, Gutowski TG (2004) An environmental analysis of machining. In ASME international mechanical engineering congress and RD&D exposition. Anaheim, California, USA, 1–10
20.
Zurück zum Zitat Hauschild MZ, Rosenbaum RK, Olsen SI (2018) Life cycle assessment—theory and practice. Springer Hauschild MZ, Rosenbaum RK, Olsen SI (2018) Life cycle assessment—theory and practice. Springer
21.
Zurück zum Zitat Schaltegger S, Sturm A (1990) Ökologische rationalität. Die Unternehmung 44:273–290 Schaltegger S, Sturm A (1990) Ökologische rationalität. Die Unternehmung 44:273–290
22.
Zurück zum Zitat Verfaillie H, Bidwell R (2000) Measuring Eco-efficiency: A Guide to Reporting Company Performance. World Business Council for Sustainable Development (WBSCD). Geneva Verfaillie H, Bidwell R (2000) Measuring Eco-efficiency: A Guide to Reporting Company Performance. World Business Council for Sustainable Development (WBSCD). Geneva
23.
Zurück zum Zitat Li DZ, Hui ECM, Leung BYP, Li QM, Xu X (2010) A methodology for eco-efficiency evaluation of residential development at city level. Build Environ 45:566–573 Li DZ, Hui ECM, Leung BYP, Li QM, Xu X (2010) A methodology for eco-efficiency evaluation of residential development at city level. Build Environ 45:566–573
24.
Zurück zum Zitat Cao H, Li H, Cheng H, Luo Y, Yin R, Chen Y (2012) A carbon efficiency approach for life-cycle carbon emission characteristics of machine tools. J Clean Prod 37:19–28 Cao H, Li H, Cheng H, Luo Y, Yin R, Chen Y (2012) A carbon efficiency approach for life-cycle carbon emission characteristics of machine tools. J Clean Prod 37:19–28
25.
Zurück zum Zitat Zhu S, Jiang Z, Zhang H, Tian G, Wang Y (2017) A carbon efficiency evaluation method for manufacturing process chain decision-making. J Clean Prod 148:665–680 Zhu S, Jiang Z, Zhang H, Tian G, Wang Y (2017) A carbon efficiency evaluation method for manufacturing process chain decision-making. J Clean Prod 148:665–680
26.
Zurück zum Zitat Bourhis FL, Kerbrat O, Hascoet JY, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69:1927–1939 Bourhis FL, Kerbrat O, Hascoet JY, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69:1927–1939
27.
Zurück zum Zitat Li C, Tang Y, Cui L, Li P (2015) A quantitative approach to analyze carbon emissions of CNC-based machining systems. J Intell Manuf 26:911–922 Li C, Tang Y, Cui L, Li P (2015) A quantitative approach to analyze carbon emissions of CNC-based machining systems. J Intell Manuf 26:911–922
28.
Zurück zum Zitat Beiranvand ZM, Ghaini FM, Moosavy HN, Sheikhi M, Moradi M (2020) The relation between magnesium evaporation and laser absorption and weld penetration in pulsed laser welding of aluminum alloys: experimental and numerical investigations. Opt Laser Technol 128:106170 Beiranvand ZM, Ghaini FM, Moosavy HN, Sheikhi M, Moradi M (2020) The relation between magnesium evaporation and laser absorption and weld penetration in pulsed laser welding of aluminum alloys: experimental and numerical investigations. Opt Laser Technol 128:106170
29.
Zurück zum Zitat Jiang Z, Zhang Y (2015) Study on process and properties of laser filling welding for 6061 Al alloy. Hot-Working Process 44:189–191 (in Chinese) Jiang Z, Zhang Y (2015) Study on process and properties of laser filling welding for 6061 Al alloy. Hot-Working Process 44:189–191 (in Chinese)
Metadaten
Titel
A carbon efficiency approach for laser welding environmental performance assessment and the process parameters decision-making
verfasst von
Zhuo Huang
Huajun Cao
Dan Zeng
Weiwei Ge
Chengmao Duan
Publikationsdatum
09.04.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07011-8

Weitere Artikel der Ausgabe 7-8/2021

The International Journal of Advanced Manufacturing Technology 7-8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.