Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 1/2017

07.09.2015 | ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems

verfasst von: Leila Ahmadi, Steven B. Young, Michael Fowler, Roydon A. Fraser, Mohammad Ahmadi Achachlouei

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Lithium-ion (Li-ion) battery packs recovered from end-of-life electric vehicles (EV) present potential technological, economic and environmental opportunities for improving energy systems and material efficiency. Battery packs can be reused in stationary applications as part of a “smart grid”, for example to provide energy storage systems (ESS) for load leveling, residential or commercial power. Previous work on EV battery reuse has demonstrated technical viability and shown energy efficiency benefits in energy storage systems modeled under commercial scenarios. The current analysis performs a life cycle assessment (LCA) study on a Li-ion battery pack used in an EV and then reused in a stationary ESS.

Methods

A complex functional unit is used to combine energy delivered by the battery pack from the mobility function and the stationary ESS. Various scenarios of cascaded “EV mobility plus reuse in stationary clean electric power scenarios” are contrasted with “conventional system mobility with internal combustion engine vehicles plus natural gas peaking power.” Eight years are assumed for first use; with 10 years for reuse in the stationary application. Operational scenarios and environmental data are based on real time-of-day and time-of-year power use. Additional data from LCA databases are utilized. Ontario, Canada, is used as the geographic baseline; analysis includes sensitivity to the electricity mix and battery degradation. Seven environmental categories are assessed using ReCiPe.

Results and discussion

Results indicate that the manufacturing phase of the Li-ion battery will still dominate environmental impacts across the extended life cycle of the pack (first use in vehicle plus reuse in stationary application). For most impact categories, the cascaded use system appears significantly beneficial compared to the conventional system. By consuming clean energy sources for both use and reuse, global and local environmental stress reductions can be supported. Greenhouse gas advantages of vehicle electrification can be doubled by extending the life of the EV batteries, and enabling better use of off-peak low-cost clean electricity or intermittent renewable capacity. However, questions remain concerning implications of long-duration use of raw material resources employed before potential recycling.

Conclusions

Li-ion battery packs present opportunities for powering both mobility and stationary applications in the necessary transition to cleaner energy. Battery state-of-health is a considerable determinant in the life cycle performance of a Li-ion battery pack. The use of a complex functional unit was demonstrated in studying a component system with multiple uses in a cascaded application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahmadi L, Fowler M, Young SB, Fraser RA, Gaffney B, Walker SB (2014a) Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustainable Energy Technol Assess 8:9–17CrossRef Ahmadi L, Fowler M, Young SB, Fraser RA, Gaffney B, Walker SB (2014a) Energy efficiency of Li-ion battery packs re-used in stationary power applications. Sustainable Energy Technol Assess 8:9–17CrossRef
Zurück zum Zitat Ahmadi L, Yip A, Fowler M, Young SB, Fraser RA (2014b) Environmental feasibility of re-use of electric vehicle batteries. Sustainable Energy Technol Assess 6:64–74CrossRef Ahmadi L, Yip A, Fowler M, Young SB, Fraser RA (2014b) Environmental feasibility of re-use of electric vehicle batteries. Sustainable Energy Technol Assess 6:64–74CrossRef
Zurück zum Zitat Bennion K, Thornton M (2009) Fuel savings from hybrid electric vehicles fuel savings from hybrid electric vehicles. In: National Renewable Energy Laboratory, US Bennion K, Thornton M (2009) Fuel savings from hybrid electric vehicles fuel savings from hybrid electric vehicles. In: National Renewable Energy Laboratory, US
Zurück zum Zitat Casals LC, García BA, Aguesse F, Iturrondobeitia A (2015) Second life of electric vehicle batteries: relation between materials degradation and environmental impact. Int J Life Cycle. doi:10.1007/s11367-015-0918-3 Casals LC, García BA, Aguesse F, Iturrondobeitia A (2015) Second life of electric vehicle batteries: relation between materials degradation and environmental impact. Int J Life Cycle. doi:10.​1007/​s11367-015-0918-3
Zurück zum Zitat Cicconi P, Landi D, Morbidoni A, Germani M (2012) Feasibility analysis of second life applications for Li-ion cells used in electric powertrain using environmental indicators. In: Energy Conference and Exhibition (ENERGYCON), 2012 I.E. International, pp 985–990 Cicconi P, Landi D, Morbidoni A, Germani M (2012) Feasibility analysis of second life applications for Li-ion cells used in electric powertrain using environmental indicators. In: Energy Conference and Exhibition (ENERGYCON), 2012 I.E. International, pp 985–990
Zurück zum Zitat Cready E, Lippert J, Pihl J, Weinstock I, Symons P, Jungst RG (2003) Final Report Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications A Study for the DOE Energy Storage Systems Program Cready E, Lippert J, Pihl J, Weinstock I, Symons P, Jungst RG (2003) Final Report Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications A Study for the DOE Energy Storage Systems Program
Zurück zum Zitat Ekvall T, Tillman AM (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2(3):155–162CrossRef Ekvall T, Tillman AM (1997) Open-loop recycling: criteria for allocation procedures. Int J Life Cycle Assess 2(3):155–162CrossRef
Zurück zum Zitat Ellingsen LAW, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18(1):113–124CrossRef Ellingsen LAW, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium-ion battery vehicle pack. J Ind Ecol 18(1):113–124CrossRef
Zurück zum Zitat Frischknecht R, Jungbluth N, Althaus H, Doka G, Dones R, Heck T, Spielmann M (2007) Overview and methodology. Dubendorf Frischknecht R, Jungbluth N, Althaus H, Doka G, Dones R, Heck T, Spielmann M (2007) Overview and methodology. Dubendorf
Zurück zum Zitat Gaffney B, Walker SB, Fowler M, Young SB et al. (2014) FMEA and fault tree analysis for second use EV battery in a residence. 64th Canadian Society of Chemical Engineers Conference (CSCHe2014), pp 19–22 October, 2014, Niagara Falls, Canada Gaffney B, Walker SB, Fowler M, Young SB et al. (2014) FMEA and fault tree analysis for second use EV battery in a residence. 64th Canadian Society of Chemical Engineers Conference (CSCHe2014), pp 19–22 October, 2014, Niagara Falls, Canada
Zurück zum Zitat Gaines L, Sullivan J, Burnham A, Belharouak I (2011) Life-cycle analysis for lithium-ion battery production and recycling. Transportation Research Board 90th Annual Meeting, Washington, DC, pp 23–27 Gaines L, Sullivan J, Burnham A, Belharouak I (2011) Life-cycle analysis for lithium-ion battery production and recycling. Transportation Research Board 90th Annual Meeting, Washington, DC, pp 23–27
Zurück zum Zitat Gemechu E, Sonnemann G, Young S (2015) Geopolitical related supply risk assessment as a complement to environmental impacts assessment: the case of electric vehicles. Int J Life Cycle Assess. doi:10.1007/s11367-015-0917-4 Gemechu E, Sonnemann G, Young S (2015) Geopolitical related supply risk assessment as a complement to environmental impacts assessment: the case of electric vehicles. Int J Life Cycle Assess. doi:10.​1007/​s11367-015-0917-4
Zurück zum Zitat Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64CrossRef
Zurück zum Zitat Herrmann C, Raatz A, Mennenga M, Schmitt J, Andrew S (2012) assessment of automation potentials for the disassembly of automotive lithium ion battery systems. In: Leveraging Technology for a Sustainable World, pp 149–154 Herrmann C, Raatz A, Mennenga M, Schmitt J, Andrew S (2012) assessment of automation potentials for the disassembly of automotive lithium ion battery systems. In: Leveraging Technology for a Sustainable World, pp 149–154
Zurück zum Zitat Heymans C, Walker SB, Young SB, Fowler M (2014) Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71:22–30CrossRef Heymans C, Walker SB, Young SB, Fowler M (2014) Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling. Energy Policy 71:22–30CrossRef
Zurück zum Zitat Hischier R, Classen M, Lehmann M (2007) Life cycle inventories of electric and electronic equipment: production, use and disposal. Swiss Centre for Life Cycle Inventories, St. Gallen/Dubendorf Hischier R, Classen M, Lehmann M (2007) Life cycle inventories of electric and electronic equipment: production, use and disposal. Swiss Centre for Life Cycle Inventories, St. Gallen/Dubendorf
Zurück zum Zitat IESO (2012a) Monthly Market Report December 2012. Mississauga, Canada IESO (2012a) Monthly Market Report December 2012. Mississauga, Canada
Zurück zum Zitat IESO (2012b, January 6) Composition of Ontario’s electricity mix continues to change: consumer response supports reliability. Independent electricity system operator. http://doi.org/613 -738-2646 IESO (2012b, January 6) Composition of Ontario’s electricity mix continues to change: consumer response supports reliability. Independent electricity system operator. http://​doi.​org/​613 -738-2646
Zurück zum Zitat Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45(10):4548–4554CrossRef
Zurück zum Zitat Mallia E, Lewis G (2012) Life cycle greenhouse gas emissions of electricity generation in the province of Ontario, Canada. Int J Life Cycle Assess 18(2):377–391CrossRef Mallia E, Lewis G (2012) Life cycle greenhouse gas emissions of electricity generation in the province of Ontario, Canada. Int J Life Cycle Assess 18(2):377–391CrossRef
Zurück zum Zitat McManus MC (2012) Environmental consequences of the use of batteries in low carbon systems: the impact of battery production. Appl Energy 93:288–295CrossRef McManus MC (2012) Environmental consequences of the use of batteries in low carbon systems: the impact of battery production. Appl Energy 93:288–295CrossRef
Zurück zum Zitat Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus H-J (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44(17):6550–6556CrossRef Notter DA, Gauch M, Widmer R, Wäger P, Stamp A, Zah R, Althaus H-J (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ Sci Technol 44(17):6550–6556CrossRef
Zurück zum Zitat Richa K, Babbitt CW, Gaustad G, Wang X (2014) A future perspective on lithium-ion battery waste flows from electric vehicles. Res Conserv Recycl 83:63–76CrossRef Richa K, Babbitt CW, Gaustad G, Wang X (2014) A future perspective on lithium-ion battery waste flows from electric vehicles. Res Conserv Recycl 83:63–76CrossRef
Zurück zum Zitat Richa K, Babbitt CW, Nenadic N, Gaustad G (2015) Environmental trade-offs across cascading lithium-ion battery life cycles. Int J Life Cycle Assess. doi:10.1007/s11367-015-0942-3 Richa K, Babbitt CW, Nenadic N, Gaustad G (2015) Environmental trade-offs across cascading lithium-ion battery life cycles. Int J Life Cycle Assess. doi:10.​1007/​s11367-015-0942-3
Zurück zum Zitat Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manag 46(11–12):1957–19793CrossRef Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part I: performance and energy requirements. Energy Convers Manag 46(11–12):1957–19793CrossRef
Zurück zum Zitat Saha B, Goebel K (2009) Modeling Li-ion battery capacity depletion in a particle filtering framework. In: Annual Conference of the PHM Society, San Diego, CA, pp 1–10 Saha B, Goebel K (2009) Modeling Li-ion battery capacity depletion in a particle filtering framework. In: Annual Conference of the PHM Society, San Diego, CA, pp 1–10
Zurück zum Zitat Shokrzadeh S, Bibeau E (2012) Repurposing batteries of plug-in electric vehicles to support renewable energy penetration in the electric grid. SAE. doi:10.4271/2012-01-0348 Shokrzadeh S, Bibeau E (2012) Repurposing batteries of plug-in electric vehicles to support renewable energy penetration in the electric grid. SAE. doi:10.​4271/​2012-01-0348
Zurück zum Zitat Simon B, Weil M (2013) Analysis of materials and energy flows of different lithium ion traction batteries. Rev Métal 110(1):65–76CrossRef Simon B, Weil M (2013) Analysis of materials and energy flows of different lithium ion traction batteries. Rev Métal 110(1):65–76CrossRef
Zurück zum Zitat Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Miller HL (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK
Zurück zum Zitat Sonnemann G, Gemechu ED, Adibi N, De Bruille V, Bulle C (2015) From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. J Clean Prod 94:20–34CrossRef Sonnemann G, Gemechu ED, Adibi N, De Bruille V, Bulle C (2015) From a critical review to a conceptual framework for integrating the criticality of resources into Life Cycle Sustainability Assessment. J Clean Prod 94:20–34CrossRef
Zurück zum Zitat Tomić J, Kempton W (2007) Using fleets of electric-drive vehicles for grid support. J Power Sources 168(2):459–468CrossRef Tomić J, Kempton W (2007) Using fleets of electric-drive vehicles for grid support. J Power Sources 168(2):459–468CrossRef
Zurück zum Zitat Van Lanen D, Cocking J, Walker SB, Fowler M, Fraser R, Young SB, Yip A (2015) Economic and environmental analysis of a green energy hub with energy storage under fixed and variable pricing structures. Int J Process Systems Engin Van Lanen D, Cocking J, Walker SB, Fowler M, Fraser R, Young SB, Yip A (2015) Economic and environmental analysis of a green energy hub with energy storage under fixed and variable pricing structures. Int J Process Systems Engin
Zurück zum Zitat Wang X, Gaustad G, Babbitt C, Bailey C, Ganter M, Landi B (2014) Economic and environmental characterization of an evolving Li-ion battery waste stream. Environ Manag 135:126–134 Wang X, Gaustad G, Babbitt C, Bailey C, Ganter M, Landi B (2014) Economic and environmental characterization of an evolving Li-ion battery waste stream. Environ Manag 135:126–134
Zurück zum Zitat Williams BD, Lipman TE (2010) Strategy for overcoming cost hurdles of plug-in-hybrid battery in California. Trans Res Rec: J Trans Res Board 2191:59–66CrossRef Williams BD, Lipman TE (2010) Strategy for overcoming cost hurdles of plug-in-hybrid battery in California. Trans Res Rec: J Trans Res Board 2191:59–66CrossRef
Zurück zum Zitat Wolfs P (2010) An economic assessment of “ second use ” lithium-ion batteries for grid support. In: AUPEC Wolfs P (2010) An economic assessment of “ second use ” lithium-ion batteries for grid support. In: AUPEC
Zurück zum Zitat Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—critical issues. J Clean Prod 18(15):1519–1529CrossRef Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles—critical issues. J Clean Prod 18(15):1519–1529CrossRef
Metadaten
Titel
A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems
verfasst von
Leila Ahmadi
Steven B. Young
Michael Fowler
Roydon A. Fraser
Mohammad Ahmadi Achachlouei
Publikationsdatum
07.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 1/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0959-7

Weitere Artikel der Ausgabe 1/2017

The International Journal of Life Cycle Assessment 1/2017 Zur Ausgabe

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Is there a resource constraint related to lithium ion batteries in cars?

ASSESSING AND MANAGING LIFE CYCLES OF ELECTRIC VEHICLES

Environmental trade-offs across cascading lithium-ion battery life cycles